12 resultados para Enzymatic esterification
em CentAUR: Central Archive University of Reading - UK
Resumo:
The location of extracellular enzymes within the soil architecture and their association with the various soil components affects their catalytic potential. A soil fractionation study was carried out to investigate: (a) the distribution of a range of hydrolytic enzymes involved in C, N and P transformations, (b) the effect of the location on their respective kinetics, (c) the effect of long-term N fertilizer management on enzyme distribution and kinetic parameters. Soil (silty clay loam) from grassland which had received 0 or 200 kg N ha(-1) yr(-1) was fractionated, and four particle-size fractions (> 200, 200-63, 63-2 and 0. 1-2 mum) were obtained by a combination of wet-sieving and centrifugation, after low-energy ultrasonication. All fractions were assayed for four carbohydrases (beta-cellobiohydrolase, N-acetyl-beta-glucosammidase, beta-glucosidase and beta-xylosidase), acid phosphatase and leucine-aminopeptidase using a microplate fluorimetric assay based on MUB-substrates. Enzyme kinetics (V-max and K-m) were estimated in three particle-size fractions and the unfractionated soil. The results showed that not all particle-size fractions were equally enzymatically active and that the distribution of enzymes between fractions depended on the enzyme. Carbohydrases predominated in the coarser fractions while phosphatase and leucine-aminopeptidase were predominant in the clay-size fraction. The Michaelis constant (K.) varied among fractions, indicating that the association of the same enzyme with different particle-size fractions affected its substrate affinity. The same values of Km were found in the same fractions from the soil under two contrasting fertilizer management regimes, indicating that the Michaelis constant was unaffected by soil changes caused by N fertilizer management. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Background and aims: Epidemiological evidence indicates that cereal dietary fibre (DF) may have several cardiovascular health benefits. The underlying mechanisms have not yet been elucidated. Here, the potential nutritional effects of physico-chemical. properties modifications of durum wheat dietary fibre (DWF) induced by enzyme treatment have been investigated. Methods and results: The conversion of the highly polymerised insoluble dietary fibre into soluble feruloyl oligosaccharides of DWF was achieved by a tailored enzymatic treatment. The in vitro fermentation and release of ferulic acid by intestinal microbiota from DWF before and after the enzymatic treatment were assessed using a gut model validated to mimic the human colonic microbial environment. Results demonstrated that, compared to DWF, the enzyme-treated DWF (ETD-WF) stimulated the growth of bifidobacteria and lactobacilli. Concurrently, the release of free ferulic acid by ET-DWF was almost three times higher respect to the control. No effect on the formation of short chain fatty acids was observed. Conclusions: The conversion of insoluble dietary fibre from cereals into soluble dietary fibre generated a gut microbial fermentation that supported bifidobacteria and lactobacilli. The concurrent increase in free ferulic acid from the enzyme-treated DWF might result in a higher plasma ferulic acid concentration which could be one of the reasons for the health benefits reported for dietary fibre in cardiovascular diseases. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Background: Galactooligosaccharides are selectively fermented by the beneficial member of the colonic microflora contributing to the health of the host. Objective: We assessed the prebiotic potential of a novel galactooligosaccharide produced through the action of beta-galactosidases, originating from a probiotic Bifidobacterium bifidum strain, against a galactooligosaccharide produced through the action of an industrial P-galactosidase and a placebo. Design: Fifty-nine healthy human volunteers participated in this study. Initially, the effect of the matrix on the prebiotic properties of a commercially available galactooligosaccharide (7 g/d) was assessed during 7-d treatment periods with a 7-d washout period in between. During the second phase, 30 volunteers were assigned to a sequence of treatments (7 d) differing in the amount of the novel galactooligosaccharide (0, 3.6, or 7 g/d). Stools were recovered before and after each intervention, and bacteria numbers were determined by fluorescent in situ hybridization. Results: Addition of the novel galactooligosaccharide mixture significantly increased the bifidobacterial population ratio compared with the placebo (P < 0.05), whereas 7 g/d of the novel galactooligosaccharide significantly increased the bifidobacterial ratio compared with the commercial galactooligosaccharide (P < 0.05). Moreover, a significant relation (P < 0.001) between the bifidobacteria proportion and the novel galactooligosaccharide dose (0, 3.6, and 7 g/d) was observed. This relation was similar to the effect of the novel galactooligosaccharide on the prebiotic index of each dose. Conclusions: This study showed that galactooligosaccharide mixtures produced with different beta-galactosidases show different prebiotic properties and that, by using enzymes originating from bifidobacterial species, an increase in the bifidogenic properties of the prebiotic product is achievable.
Resumo:
The overall aim of this work was to characterize the major angiotensin converting enzyme (ACE) inhibitory peptides produced by enzymatic hydrolysis of whey proteins, through the application of a novel integrative process. This process consisted of the combination of adsorption and microfiltration within a stirred cell unit for the selective immobilization of β-lactoglobulin and casein derived peptides (CDP) from whey. The adsorbed proteins were hydrolyzed in-situ which resulted in the separation of peptide products from the substrate and fractionation of peptides. Two different hydrolysates were produced: (i) from CDP (IC50 =287μg/mL) and (ii) from β-lactoglobulin (IC50=128μg/mL). IC50 is the concentration of inhibitor needed to inhibit ACE by half. The well known antihypertensive peptide IPP and several novel peptides that have structural similarities with reported ACE inhibitory peptides were identified and characterized in both hydrolysates. Furthermore, the hydrolysates were assessed for bitterness. No significant difference was found between the control (milk with no hydrolysate) and hydrolysate samples at different concentrations (at, below and above the IC50).
Resumo:
Activation induced deaminase (AID) deaminates cytosine to uracil, which is required for a functional humoral immune system. Previous work demonstrated, that AID also deaminates 5-methylcytosine (5 mC). Recently, a novel vertebrate modification (5-hydroxymethylcytosine - 5 hmC) has been implicated in functioning in epigenetic reprogramming, yet no molecular pathway explaining the removal of 5 hmC has been identified. AID has been suggested to deaminate 5 hmC, with the 5 hmU product being repaired by base excision repair pathways back to cytosine. Here we demonstrate that AID’s enzymatic activity is inversely proportional to the electron cloud size of C5-cytosine - H . F . methyl .. hydroxymethyl. This makes AID an unlikely candidate to be part of 5 hmC removal.
Resumo:
The GABase assay is widely used to rapidly and accurately quantify levels of extracellular γ-aminobutyric acid (GABA). Here we demonstrate a modification of this assay that enables quantification of intracellular GABA in bacterial cells. Cells are lysed by boiling and ethanolamine-O-sulphate, a GABA transaminase inhibitor is used to distinguish between GABA and succinate semialdehyde.
Resumo:
We describe a fluorometric assay for heme synthetase, the enzyme that is genetically deficient in erythropoietic protoporphyria. The method, which can readily detect activity in 1 microliter of packed human lymphocytes, is based on the formation of zinc protoheme from protoporphyrin IX. That zinc chelatase and ferrochelatase activities reside in the same enzyme was shown by the competitive action of ferrous ions and the inhibitory effects of N-methyl protoporphyrin (a specific inhibitor of heme synthetase) on zinc chelatase. The Km for zinc was 11 micrograms and that for protoporphyrin IX was 6 microM. The Ki fro ferrous ions was 14 microM. Zinc chelatase was reduced to 15.3% of the mean control activity in lymphocytes obtained from patients with protoporphyria, thus confirming the defect of heme biosynthesis in this disorder. The assay should prove to be useful for determining heme synthetase in tissues with low specific activity and to investigate further the enzymatic defect in protoporphyria.
Resumo:
Erythropoietic protoporphyria (EPP) is associated with a deficiency of protohaem ferrolyase. We have used a novel assay for this enzyme based on its ability to utilize zinc as a substrate to investigate the inheritance of EPP in nine affected families. Zinc chelatase activity was markedly reduced in peripheral blood mononuclear cells from 14 EPP patients (mean, 3.3 nmol Zn protohaem/h/mg protein; range, 0.3-8.0) when compared with 41 controls (16.8 +/- 3.6) p less than 0.01. In three families with parent-to-child transmission of disease, the asymptomatic parent had an enzymatic activity within the normal range. In three pedigrees where the parents were asymptomatic, enzymatic activities were below the 95% confidence limits in both. Zinc chelatase activity was below the mean control value in 17 of the 18 parents in nine affected pedigrees, and six of seven asymptomatic offspring of patients with protoporphyria. The findings suggest that EPP is not transmitted as a simple dominant trait and that inheritance of more than one gene may be required for disease expression.
Resumo:
Claviceps purpurea is a biotrophic fungal pathogen of grasses causing the ergot disease. The infection process of C. purpurea on rye flowers is accompanied by pectin degradation and polygalacturonase (PG) activity represents a pathogenicity factor. Wheat is also infected by C. purpurea and we tested whether the presence of polygalacturonase inhibiting protein (PGIP) can affect pathogen infection and ergot disease development. Wheat transgenic plants expressing the bean PvPGIP2 did not show a clear reduction of disease symptoms when infected with C. purpurea. To ascertain the possible cause underlying this lack of improved resistance of PvPGIP2 plants, we expressed both polygalacturonases present in the C. purpurea genome, cppg1 and cppg2 in Pichia pastoris. In vitro assays using the heterologous expressed PGs and PvPGIP2 showed that neither PG is inhibited by this inhibitor. To further investigate the role of PG in the C. purpurea/wheat system, we demonstrated that the activity of both PGs of C. purpurea is reduced on highly methyl esterified pectin. Finally, we showed that this reduction in PG activity is relevant in planta, by inoculating with C. purpurea transgenic wheat plants overexpressing a pectin methyl esterase inhibitor (PMEI) and showing a high degree of pectin methyl esterification. We observed reduced disease symptoms in the transgenic line compared with null controls. Together, these results highlight the importance of pectin degradation for ergot disease development in wheat and sustain the notion that inhibition of pectin degradation may represent a possible route to control of ergot in cereals.
Resumo:
The enzymatic cleavage of a peptide amphiphile (PA) is investigated. The self-assembly of the cleaved products is distinct from that of the PA substrate. The PA C16-KKFFVLK is cleaved by α-chymotrypsin at two sites leading to products C16-KKF with FVLK and C16-KKFF with VLK. The PA C16-KKFFVLK forms nanotubes and helical ribbons at room temperature. Both PAs C16-KKF and C16-KKFF corresponding to cleavage products instead self-assemble into 5-6 nm diameter spherical micelles, while peptides FVLK and VLK do not adopt well-defined aggregate structures. The secondary structures of the PAs and peptides are examined by FTIR and circular dichroism spectroscopy and X-ray diffraction. Only C16-KKFFVLK shows substantial β-sheet secondary structure, consistent with its self-assembly into extended aggregates, based on PA layers containing hydrogen-bonded peptide headgroups. This PA also exhibits a thermoreversible transition to twisted tapes on heating.
Resumo:
Tiger nut (Cyperus esculentus) tuber contains oil that is high in monounsaturated fatty acids, and this oil makes up about 23% of the tuber. The study aimed at evaluating the impact of several factors and enzymatic pre-treatment on the recovery of pressed tiger nut oil. Smaller particles were more favourable for pressing. High pressure pre-treatment did not increase oil recovery but enzymatic treatment did. The highest yield obtained by enzymatic treatment prior to mechanical extraction was 33 % on a dry defatted basis, which represents a recovery of 90 % of the oil. Tiger nut oil consists mainly of oleic acid; its acid and peroxide values reflect the high stability of the oil.
Resumo:
The tiger nut tuber of the Cyperus esculentus L. plant is an unusual storage system with similar amounts of starch and lipid. The extraction of its oil employing both mechanical pressing and aqueous enzymatic extraction (AEE) methods was investigated and an examination of the resulting products was carried out. The effects of particle size and moisture content of the tuber on the yield of tiger nut oil with pressing were initially studied. Smaller particles were found to enhance oil yields while a range of moisture content was observed to favour higher oil yields. When samples were first subjected to high pressures up to 700 MPa before pressing at 38 MPa there was no increase in the oil yields. Ground samples incubated with a mixture of α- Amylase, Alcalase, and Viscozyme (a mixture of cell wall degrading enzyme) as a pre-treatment, increased oil yield by pressing and 90% of oil was recovered as a result. When aqueous enzymatic extraction was carried out on ground samples, the use of α- Amylase, Alcalase, and Celluclast independently improved extraction oil yields compared to oil extraction without enzymes by 34.5, 23.4 and 14.7% respectively. A mixture of the three enzymes further augmented the oil yield and different operational factors were individually studied for their effects on the process. These include time, total mixed enzyme concentration, linear agitation speed, and solid-liquid ratio. The largest oil yields were obtained with a solid-liquid ratio of 1:6, mixed enzyme concentration of 1% (w/w) and 6 h incubation time although the longer time allowed for the formation of an emulsion. Using stationary samples during incubation surprisingly gave the highest oil yields, and this was observed to be as a result of gravity separation occurring during agitation. Furthermore, the use of high pressure processing up to 300 MPa as a pre-treatment enhanced oil yields but additional pressure increments had a detrimental effect. The quality of oils recovered from both mechanical and aqueous enzymatic extraction based on the percentage free fatty acid (% FFA) and peroxide values (PV) all reflected the good stabilities of the oils with the highest % FFA of 1.8 and PV of 1.7. The fatty acid profiles of all oils also remained unchanged. The level of tocopherols in oils were enhanced with both enzyme aided pressing (EAP) and high pressure processing before AEE. Analysis on the residual meals revealed DP 3 and DP 4 oligosaccharides present in EAP samples but these would require further assessment on their identity and quality.