13 resultados para Environmentally adapted lubricant
em CentAUR: Central Archive University of Reading - UK
Resumo:
In a series of experiments the toxicity of lead to worms in soil was determined following the draft OECD earthworm reproduction toxicity protocol except that lead was added as solid lead nitrate, carbonate and sulphide rather than as lead nitrate solution as would normally be the case. The compounds were added to the test soil to give lead concentrations of 625-12500 pg Pb g-1 of soil. Calculated toxicities of the lead decreased in the order nitrate > carbonate > sulphide, the same order as the decrease in the solubility of the metal compounds used. The 7-day LC50 (lethal concentration when 50% of the population is killed) for the nitrate was 5321 +/- 275 mug Pb g(-1) of soil and this did not change with time. The LC50 values for carbonate and sulphide could not be determined at the concentration ranges used. The only parameter sensitive enough to distinguish the toxicities of the three compounds was cocoon (egg) production. The EC50S for cocoon production (the concentration to produce a 50% reduction in cocoon production) were 993, 8604 and 10 246 mug Pb g(-1) of soil for lead nitrate, carbonate and sulphide, respectively. Standard toxicity tests need to take into account the form in which the contaminant is present in the soil to be of environmental relevance. (C) 2002 Elsevier Science Ltd. All rights reserved.
The effectiveness of adapted rumen fluid versus PEG to ferment tannin-containing substrates in vitro
Resumo:
This study investigated the potential of the goat's ruminal adaptation to reduce the negative effect of tannins on in vitro fermentation. Rumen fluid was obtained from goats fed a mixture of tannin-containing tree fruits (adapted rumen fluid) or tannin-free commercial protein supplements (unadapted rumen fluid) for 85 days. Dry, mature fruits of Acacia nilotica, Acacia erubescens, Acacia erioloba, Dichrostachys cinerea and Piliostigma thonningii were used as substrates for the in vitro fermentation. The effectiveness of adapted rumen fluid to ferment tannin-containing substrates was compared to the extent of fermentation when tannins were inactivated with polyethylene glycol (PEG), a known tannin-binding agent. Adapted rumen fluid (P < 0.05) increased gas production from all five substrates between 15.8% and 73.7%. In A. nilotica, D. cinerea and P thonningii, this increase was less than that obtained through PEG treatment. When PEG was added to adapted rumen fluid a further improvement in extent of fermentation was observed in four out of the five fruit samples. The largest PEG effect when incubated with adapted rumen fluid was observed in A. nilotica (43.1%) and D. cinerea (42.9%) fruits. It is concluded that some tannin-rich feedstuffs may still benefit from treatment even when these are offered to adapted animals. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The majority of studies demonstrating local adaptation of insect herbivores involve sessile species, particularly those with a parthenogentic phase to their life history or endophagous "parasites" of plants. Current arguments suggest the strength of selection determines whether local adaptation can or cannot take place. Therefore local adaptation should not be limited to species with such traits. We studied the ability of three polyphagous geometrid moths with flightless adult females (Erannisdefoliaria, Operophtera brumata and O. fagata) to synchronise their egg hatching with the budburst of a local host species in north east Scotland. A strong selection for hatching time is expected among generalist moths given the large variation in budburst phenology and an inability to hatch in synchrony with budburst decreases moth fitness substantially. In two successive seasons, we trapped emerging females from patches of five host species and recorded the temperature sum needed for 50% egg hatch of each brood laid by the trapped females. The hatching times of broods were compared against the average budburst time of the maternal host species in the study area. In addition, the trapping dates of each female were recorded. Only O. brumata showed synchrony with egg hatch and budburst which suggests local phenological adaptation to different host species. This could be maintained by selection and partial reproductive isolation between populations dwelling on different host species. No phenological adaptation was found in the other common geometrids of the study area
Resumo:
The recent decline in the effectiveness of some azole fungicides in controlling the wheat pathogen Mycosphaerella graminicola has been associated with mutations in the CYP51 gene encoding the azole target, the eburicol 14 alpha-demethylase (CYP51), an essential enzyme of the ergosterol biosynthesis pathway. In this study, analysis of the sterol content of M. graminicola isolates carrying different variants of the CYP51 gene has revealed quantitative differences in sterol intermediates, particularly the CYP51 substrate eburicol. Together with CYP51 gene expression studies, these data suggest that mutations in the CYP51 gene impact on the activity of the CYP51 protein.
Resumo:
Although the construction pollution index has been put forward and proved to be an efficient approach to reducing or mitigating pollution level during the construction planning stage, the problem of how to select the best construction plan based on distinguishing the degree of its potential adverse environmental impacts is still a research task. This paper first reviews environmental issues and their characteristics in construction, which are critical factors in evaluating potential adverse impacts of a construction plan. These environmental characteristics are then used to structure two decision models for environmental-conscious construction planning by using an analytic network process (ANP), including a complicated model and a simplified model. The two ANP models are combined and called the EnvironalPlanning system, which is applied to evaluate potential adverse environmental impacts of alternative construction plans.
Resumo:
European agricultural and environmental policy has evolved considerably over the last 15 years. In this paper the changes in farm businesses in an Environmentally Sensitive Area in England are evaluated based on two surveys with the same farmers at the start and end of this period. The rate of participation in the environmental scheme had increased significantly at a time when Government led goals in this area had developed and become more output focussed. A combination of policy, market and animal health status changes had encouraged a number to leave cattle production, and though remaining with stock and grass they had decided against any extensive development in the direction of pluriactivity – with or without Government encouragement. This left the future of this group in some uncertainty given that two significant forms of financial support, the environmental scheme and the Hill Farm Allowance, were due to close.
Resumo:
The increasing demand for ecosystem services, in conjunction with climate change, is expected to signif- icantly alter terrestrial ecosystems. In order to evaluate the sustainability of land and water resources, there is a need for a better understanding of the relationships between crop production, land surface characteristics and the energy and water cycles. These relationships are analysed using the Joint UK Land Environment Simulator (JULES). JULES includes the full hydrological cycle and vegetation effects on the energy, water, and carbon fluxes. However, this model currently only simulates land surface processes in natural ecosystems. An adapted version of JULES for agricultural ecosystems, called JULES-SUCROS has therefore been developed. In addition to overall model improvements, JULES-SUCROS includes a dynamic crop growth structure that fully fits within and builds upon the biogeochemical modelling framework for natural vegetation. Specific agro-ecosystem features such as the development of yield-bearing organs and the phenological cycle from sowing till harvest have been included in the model. This paper describes the structure of JULES-SUCROS and evaluates the fluxes simulated with this model against FLUXNET measurements at 6 European sites. We show that JULES-SUCROS significantly improves the correlation between simulated and observed fluxes over cropland and captures well the spatial and temporal vari- ability of the growth conditions in Europe. Simulations with JULES-SUCROS highlight the importance of vegetation structure and phenology, and the impact they have on land–atmosphere interactions.
Resumo:
This paper proposes a framework to support Customer Relationship Management (CRM) implementation in nursing homes. The work extends research by Cheng et al. (2005) who conducted in-depth questionnaires to identify critical features (termed value-characteristics), which are areas identified as adding the most value if implemented. Although Cheng et al. did proposed an implementation framework, summary of, and inconsistent inclusion of value-characteristics, limits the practical use of this contribution during implementation. In this paper we adapt the original framework to correct perceived deficiencies. We link the value characteristics to operational, analytical, strategic and/or collaborative CRM solution types, to allow consideration in context of practical implementation solutions. The outcome of this paper shows that, practically, a 'one solution meets all characteristic' approach to CRM implementation within nursing homes is inappropriate. Our framework, however, supports implementers in identifying how value can be gained when implementing a specific CRM solution within nursing homes; which subsequently support project management and expectation management.
Resumo:
Societal concern is growing about the consequences of climate change for food systems and, in a number of regions, for food security. There is also concern that meeting the rising demand for food is leading to environmental degradation thereby exacerbating factors in part responsible for climate change, and further undermining the food systems upon which food security is based. A major emphasis of climate change/food security research over recent years has addressed the agronomic aspects of climate change, and particularly crop yield. This has provided an excellent foundation for assessments of how climate change may affect crop productivity, but the connectivity between these results and the broader issues of food security at large are relatively poorly explored; too often discussions of food security policy appear to be based on a relatively narrow agronomic perspective. To overcome the limitation of current agronomic research outputs there are several scientific challenges where further agronomic effort is necessary, and where agronomic research results can effectively contribute to the broader issues underlying food security. First is the need to better understand how climate change will affect cropping systems including both direct effects on the crops themselves and indirect effects as a result of changed pest and weed dynamics and altered soil and water conditions. Second is the need to assess technical and policy options for either reducing the deleterious impacts or enhancing the benefits of climate change on cropping systems while minimising further environmental degradation. Third is the need to understand how best to address the information needs of policy makers and report and communicate agronomic research results in a manner that will assist the development of food systems adapted to climate change. There are, however, two important considerations regarding these agronomic research contributions to the food security/climate change debate. The first concerns scale. Agronomic research has traditionally been conducted at plot scale over a growing season or perhaps a few years, but many of the issues related to food security operate at larger spatial and temporal scales. Over the last decade, agronomists have begun to establish trials at landscape scale, but there are a number of methodological challenges to be overcome at such scales. The second concerns the position of crop production (which is a primary focus of agronomic research) in the broader context of food security. Production is clearly important, but food distribution and exchange also determine food availability while access to food and food utilisation are other important components of food security. Therefore, while agronomic research alone cannot address all food security/climate change issues (and hence the balance of investment in research and development for crop production vis à vis other aspects of food security needs to be assessed), it will nevertheless continue to have an important role to play: it both improves understanding of the impacts of climate change on crop production and helps to develop adaptation options; and also – and crucially – it improves understanding of the consequences of different adaptation options on further climate forcing. This role can further be strengthened if agronomists work alongside other scientists to develop adaptation options that are not only effective in terms of crop production, but are also environmentally and economically robust, at landscape and regional scales. Furthermore, such integrated approaches to adaptation research are much more likely to address the information need of policy makers. The potential for stronger linkages between the results of agronomic research in the context of climate change and the policy environment will thus be enhanced.
Resumo:
Background: Early microbial colonization of the gut reduces the incidence of infectious, inflammatory and autoimmune diseases. Recent population studies reveal that childhood hygiene is a significant risk factor for development of inflammatory bowel disease, thereby reinforcing the hygiene hypothesis and the potential importance of microbial colonization during early life. The extent to which early-life environment impacts on microbial diversity of the adult gut and subsequent immune processes has not been comprehensively investigated thus far. We addressed this important question using the pig as a model to evaluate the impact of early-life environment on microbe/host gut interactions during development. Results: Genetically-related piglets were housed in either indoor or outdoor environments or in experimental isolators. Analysis of over 3,000 16S rRNA sequences revealed major differences in mucosa-adherent microbial diversity in the ileum of adult pigs attributable to differences in earlylife environment. Pigs housed in a natural outdoor environment showed a dominance of Firmicutes, in particular Lactobacillus, whereas animals housed in a hygienic indoor environment had reduced Lactobacillus and higher numbers of potentially pathogenic phylotypes. Our analysis revealed a strong negative correlation between the abundance of Firmicutes and pathogenic bacterial populations in the gut. These differences were exaggerated in animals housed in experimental isolators. Affymetrix microarray technology and Real-time Polymerase Chain Reaction revealed significant gut-specific gene responses also related to early-life environment. Significantly, indoorhoused pigs displayed increased expression of Type 1 interferon genes, Major Histocompatibility Complex class I and several chemokines. Gene Ontology and pathway analysis further confirmed these results.
Resumo:
Sea ice contains flaws including frictional contacts. We aim to describe quantitatively the mechanics of those contacts, providing local physics for geophysical models. With a focus on the internal friction of ice, we review standard micro-mechanical models of friction. The solid's deformation under normal load may be ductile or elastic. The shear failure of the contact may be by ductile flow, brittle fracture, or melting and hydrodynamic lubrication. Combinations of these give a total of six rheological models. When the material under study is ice, several of the rheological parameters in the standard models are not constant, but depend on the temperature of the bulk, on the normal stress under which samples are pressed together, or on the sliding velocity and acceleration. This has the effect of making the shear stress required for sliding dependent on sliding velocity, acceleration, and temperature. In some cases, it also perturbs the exponent in the normal-stress dependence of that shear stress away from the value that applies to most materials. We unify the models by a principle of maximum displacement for normal deformation, and of minimum stress for shear failure, reducing the controversy over the mechanism of internal friction in ice to the choice of values of four parameters in a single model. The four parameters represent, for a typical asperity contact, the sliding distance required to expel melt-water, the sliding distance required to break contact, the normal strain in the asperity, and the thickness of any ductile shear zone.
Resumo:
Modelling of disorder in organic crystals is highly desirable since it would allow thermodynamic stabilities and other disorder-sensitive properties to be estimated for such systems. Two disordered organic molecular systems are modeled using a symmetry-adapted ensemble approach, in which the disordered system is treated as an ensemble of the configurations of a supercell with respect to substitution of one disorder component for another. Computation time is kept manageable by performing calculations only on the symmetrically inequivalent configurations. Calculations are presented on a substitutionally disordered system, the dichloro/dibromobenzene solid solution, and on an orientationally disordered system, eniluracil, and the resultant free energies, disorder patterns, and system properties are discussed. The results are found to be in agreement with experiment following manual removal of physically implausible configurations from ensemble averages, highlighting the dangers of a completely automated approach to organic crystal thermodynamics which ignores the barriers to equilibration once the crystal has been formed.