46 resultados para Environmental quality
em CentAUR: Central Archive University of Reading - UK
Resumo:
This paper deconstructs the relationship between the Environmental Sustainability Index (ESI) and national income. The ESI attempts to provide a single figure which encapsulates environmental sustainability' for each country included in the analysis, and this allied with a 'league table' format so as to name and shame bad performers, has resulted in widespread reporting within the popular presses of a number of countries. In essence, the higher the value of the ESI then the more 'environmentally sustainable' a country is deemed to be. A logical progression beyond the use of the ESI to publicise environmental sustainability is its use within a more analytical context. Thus an index designed to simplify in order to have an impact on policy is used to try and understand causes of good and bad performance in environmental sustainability. For example the creators of the ESI claim that ESI is related to GDP/capita (adjusted for Purchasing Power Parity) such that the ESI increases linearly with wealth. While this may in a sense be a comforting picture, do the variables within the ESI allow for alternatives to the story, and if they do then what are the repercussions for those producing such indices for broad consumption amongst the policy makers, mangers, the press, etc.? The latter point is especially important given the appetite for such indices amongst non-specialists, and for all their weaknesses the ESI and other such aggregated indices will not go away. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The issue of the sustainable development of rural economies in England has recently received considerable attention. This is because many of the poorest areas in the country are rural, often of high environmental quality, but suffering from high unemployment and a lack of services and facilities. The rapid decline in agricultural incomes and in-migration of affluent urban workers since 1990 has exacerbated economic inequality in such areas. A number of factors have the potential to drive rural development and this paper applies, and considers, the feasibility of a method from the USA for combining economic and environmental variables in a regional growth model to examine the hypothesis that environmental quality is an important determinant of sustainable rural development in England. The model output suggests that, although environmental quality does play a role in sustainable rural development in England there are other, more important, factors driving development. These include business and communications infra-structure, the degree and opportunities for commuting and underlying employment prospects. The robustness and limitations of the method for combining economic and environmental variables is discussed in relation to the spatial interrelatedness of Local Authority Districts in England, and conclusions are drawn about areas for refinement and improvement of the method.
Resumo:
A good working environment will help to provide the user with a good sense of wellbeing, inspiration and comfort. The main advantages of good environments is in terms of reduced upgrading investment, reduced sickness absence, an optimum level of productivity and improved overall satisfaction. Individuals respond very differently to their environments and research suggests a correlation between worker productivity and well-being, environmental, social and organisational factors. Research shows the occupants who report a high level of dissatisfaction about their job are usually the people who suffer more work and office environment related illnesses which affect their wellbeing, but not always so. Well-being expresses overall satisfaction. There is a connection between dissatisfied staff and low productivity; and a good sense of well-being is very important as it can lead to substantial productivity gain. If the environment is particularly bad people will be dissatisfied irrespective of job satisfaction. This paper describes research showing how environment affects productivity.
Resumo:
A regional overview of the water quality and ecology of the River Lee catchment is presented. Specifically, data describing the chemical, microbiological and macrobiological water quality and fisheries communities have been analysed, based on a division into river, sewage treatment works, fish-farm, lake and industrial samples. Nutrient enrichment and the highest concentrations of metals and micro-organics were found in the urbanised, lower reaches of the Lee and in the Lee Navigation. Average annual concentrations of metals were generally within environmental quality standards although, oil many occasions, concentrations of cadmium, copper, lead, mercury and zinc were in excess of the standards. Various organic substances (used as herbicides, fungicides, insecticides, chlorination by-products and industrial solvents) were widely detected in the Lee system. Concentrations of ten micro-organic substances were observed in excess of their environmental quality standards, though not in terms of annual averages. Sewage treatment works were the principal point source input of nutrients. metals and micro-organic determinands to the catchment. Diffuse nitrogen sources contributed approximately 60% and 27% of the in-stream load in the upper and lower Lee respectively, whereas approximately 60% and 20% of the in-stream phosphorus load was derived from diffuse sources in the upper and lower Lee. For metals, the most significant source was the urban runoff from North London. In reaches less affected by effluent discharges, diffuse runoff from urban and agricultural areas dominated trends. Flig-h microbiological content, observed in the River Lee particularly in urbanised reaches, was far in excess of the EC Bathing Water Directive standards. Water quality issues and degraded habitat in the lower reaches of the Lee have led to impoverished aquatic fauna but, within the mid-catchment reaches and upper agricultural tributaries, less nutrient enrichment and channel alteration has permitted more diverse aquatic fauna.
Resumo:
In this paper we present results from two choice experiments (CE), designed to take account of the different negative externalities associated with pesticide use in agricultural production. For cereal production, the most probable impact of pesticide use is a reduction in environmental quality. For fruit and vegetable production, the negative externality is on consumer health. Using latent class models we find evidence of the presence of preference heterogeneity in addition to reasonably high willingness to pay (WTP) estimates for a reduction in the use of pesticides for both environmental quality and consumer health. To place our WTP estimates in a policy context we convert them into an equivalent pesticide tax by type of externality. Our tax estimates suggest that pesticide taxes based on the primary externality resulting from a particular mode of agricultural production are a credible policy option that warrants further consideration.
Resumo:
The purpose of the article is to describe and analyse Ghana’s AKOBEN programme which is the first environmental performance rating and public disclosure programme in Africa. Furthermore, by means of a SWOT analysis, the article assesses the suitability of AKOBEN as a veritable tool for promoting good environmental governance in Ghana specifically and Africa in general.
Resumo:
The spatial and temporal dynamics in the stream water NO3-N concentrations in a major European river-system, the Garonne (62,700 km(2)), are described and related to variations in climate, land management, and effluent point-sources using multivariate statistics. Building on this, the Hydrologiska Byrans Vattenbalansavdelning (HBV) rainfall-runoff model and the Integrated Catchment Model of Nitrogen (INCA-N) are applied to simulate the observed flow and N dynamics. This is done to help us to understand which factors and processes control the flow and N dynamics in different climate zones and to assess the relative inputs from diffuse and point sources across the catchment. This is the first application of the linked HBV and INCA-N models to a major European river system commensurate with the largest basins to be managed tinder the Water Framework Directive. The simulations suggest that in the lowlands, seasonal patterns in the stream water NO3-N concentrations emerge and are dominated by diffuse agricultural inputs, with an estimated 75% of the river load in the lowlands derived from arable farming. The results confirm earlier European catchment studies. Namely, current semi-distrubuted catchment-scale dynamic models, which integrate variations in land cover, climate, and a simple representation of the terrestrial and in-stream N cycle, are able to simulate seasonal NO3-N patterns at large spatial (> 300 km(2)) and temporal (>= monthly) scales using available national datasets.
Resumo:
Soil contamination by arsenic (As) presents a hazard in many countries and there is a need for techniques to minimize As uptake by plants. A proposed in situ remediation method was tested by growing lettuce (Lactuca sativa L. cv. Kermit) in a greenhouse pot experiment on soil that contained 577 mg As kg(-1), taken from a former As smelter site. All combinations of iron (Fe) oxides, at concentrations of 0.00, 0.22, 0.54, and 1.09% (w/w), and lime, at concentrations of 0.00, 0.27, 0.68, and 1.36% (w/w), were tested in a factorial design. To create the treatments, field-moist soil, commercial-grade FeSO4, and ground agricultural lime were mixed and stored for one week, allowing Fe oxides to precipitate. Iron oxides gave highly significant (P < 0.001) reductions in lettuce As concentrations, down to 11% of the lettuce As concentration for untreated soil. For the Fe oxides and lime treatment combinations where soil pH was maintained nearly constant, the lettuce As concentration declined in an exponential relationship with increasing FeSO4 application rate and lettuce yield was almost unchanged. Iron oxides applied at a concentration of 1.09% did not give significantly lower lettuce As concentrations than the 0.54% treatment. Simultaneous addition of lime with FeSO4 was essential. Ferrous sulfate with insufficient lime lowered soil pH and caused mobilization of Al, Ba, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Sr, and Zn. At the highest Fe oxide to lime ratios, Mn toxicity caused severe yield loss.
Resumo:
There have been only a few studies of potassium (K) losses from grassland systems, and little is known about their dynamics, especially in relation to nitrogen (N) management. A study was performed during the autumn and winter of 1999 and 2000 to understand the effects of N and drainage on the dynamics of K leaching on a hillslope grassland soil in southwestern England. Two N application rates were studied (0 and 280 kg N ha(-1) yr(-1)), both with and without the drainage. Treatments receiving N also received farmyard manure (FM). Higher total K losses and K concentrations in the leachates were found in the N + FM treatments (150 and 185% higher than in 0 N treatments), which were related to K additions in the FM. Drainage reduced K losses by 35% because of an increase in dry matter production and a reduction in overland and preferential flow. The pattern of change in K concentration in the leachates was associated with preferential flow at the beginning of the drainage season and with matrix flow later in winter, and was best described by a double exponential curve. Rainfall intensity and the autumn application of FM were the main determinants of K losses by leaching. The study provided new insights into the relationships between soil hydrology, rainfall, and K leaching and its implications for grassland systems.
Resumo:
Soils that receive large applications of animal wastes and sewage sludge are vulnerable to releasing environmentally significant concentrations of dissolved P available to subsurface flow owing to the gradual saturation of the soil's P sorption capacity. This study evaluated P sorption (calculated from Langmuir isotherms) and availability of P (as CaCl2-P and resin P) in soils incubated for 20 d with poultry litter, poultry manure, cattle slurry, municipal sewage sludge, or KH2PO4, added on a P-equivalent basis (100 mg P kg(-1)). All the P sources had a marked negative effect on P sorption and a positive effect on P availability in all soils. In the cattle slurry- and KH2PO4- treated soils, the decreases in P sorption maximum (19-66%) and binding energy (25-89%) were consistently larger than the corresponding decreases (7-41% and 11-30%) in poultry litter-, poultry manure-, and sewage sludge-treated soils. The effects of cattle slurry and KH2PO4 on P availability were, in most cases, larger than those of the other P sources. In the poultry litter, poultry manure, and sewage sludge treatments, the increase in soil solution P was inversely related (R-2 = 0.75) to the input of Ca from these relatively high Ca (13.5-42 g kg(-1)) sources. Correlation analyses implied that the magnitude of the changes in P sorption and availability was not related to the water-extractable P content of the P sources. Future research on the sustainable application of organic wastes to agricultural soils needs to consider the non-P- as well as P-containing components of the waste.
Resumo:
The spatial and temporal dynamics in the stream water NO3-N concentrations in a major European river-system, the Garonne (62,700 km(2)), are described and related to variations in climate, land management, and effluent point-sources using multivariate statistics. Building on this, the Hydrologiska Byrans Vattenbalansavdelning (HBV) rainfall-runoff model and the Integrated Catchment Model of Nitrogen (INCA-N) are applied to simulate the observed flow and N dynamics. This is done to help us to understand which factors and processes control the flow and N dynamics in different climate zones and to assess the relative inputs from diffuse and point sources across the catchment. This is the first application of the linked HBV and INCA-N models to a major European river system commensurate with the largest basins to be managed tinder the Water Framework Directive. The simulations suggest that in the lowlands, seasonal patterns in the stream water NO3-N concentrations emerge and are dominated by diffuse agricultural inputs, with an estimated 75% of the river load in the lowlands derived from arable farming. The results confirm earlier European catchment studies. Namely, current semi-distrubuted catchment-scale dynamic models, which integrate variations in land cover, climate, and a simple representation of the terrestrial and in-stream N cycle, are able to simulate seasonal NO3-N patterns at large spatial (> 300 km(2)) and temporal (>= monthly) scales using available national datasets.
Resumo:
Nutrient cycles link agricultural systems to their societies and surroundings; inputs of nitrogen and phosphorus in particular are essential for high crop yields, but downstream and downwind losses of these same nutrients diminish environmental quality and human well-being. Agricultural nutrient balances differ substantially with economic development, from inputs that are inadequate to maintain soil fertility in parts of many developing countries, particularly those of sub-Saharan Africa, to excessive and environmentally damaging surpluses in many developed and rapidly growing economies. National and/or regional policies contribute to patterns of nutrient use and their environmental consequences in all of these situations. Solutions to the nutrient challenges that face global agriculture can be informed by analyses of trajectories of change within, as well as across, agricultural systems.
Resumo:
Soil contamination by arsenic (As) presents a hazard in many countries and there is a need for techniques to minimize As uptake by plants. A proposed in situ remediation method was tested by growing lettuce (Lactuca sativa L. cv. Kermit) in a greenhouse pot experiment on soil that contained 577 mg As kg(-1), taken from a former As smelter site. All combinations of iron (Fe) oxides, at concentrations of 0.00, 0.22, 0.54, and 1.09% (w/w), and lime, at concentrations of 0.00, 0.27, 0.68, and 1.36% (w/w), were tested in a factorial design. To create the treatments, field-moist soil, commercial-grade FeSO4, and ground agricultural lime were mixed and stored for one week, allowing Fe oxides to precipitate. Iron oxides gave highly significant (P < 0.001) reductions in lettuce As concentrations, down to 11% of the lettuce As concentration for untreated soil. For the Fe oxides and lime treatment combinations where soil pH was maintained nearly constant, the lettuce As concentration declined in an exponential relationship with increasing FeSO4 application rate and lettuce yield was almost unchanged. Iron oxides applied at a concentration of 1.09% did not give significantly lower lettuce As concentrations than the 0.54% treatment. Simultaneous addition of lime with FeSO4 was essential. Ferrous sulfate with insufficient lime lowered soil pH and caused mobilization of Al, Ba, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Sr, and Zn. At the highest Fe oxide to lime ratios, Mn toxicity caused severe yield loss.