27 resultados para Environmental Exposure.
em CentAUR: Central Archive University of Reading - UK
Resistance as a factor in environmental exposure of anticoagulant rodenticides: a modelling approach
Resumo:
Anticoagulant rodenticide (AR) resistance in Norway rat populations has been a problem for fifty years, however its impact on non-target species, particularly predatory and scavenging animals has received little attention. Field trials were conducted on farms in Germany and England where resistance to anticoagulant rodenticides had been confirmed. Resistance is conferred by different mutations of the VKORC1 gene in each of these regions: tyrosine139cysteine in Germany and leucine120glutamine in England. A modelling approach was used to study the transference of the anticoagulants into the environment during treatments for Norway rat control. Baiting with brodifacoum resulted in lower levels of AR entering the food chain via the rats and lower numbers of live rats carrying residues during and after the trials due to its lower application rate and efficacy against resistant rats. Bromadiolone and difenacoum resulted in markedly higher levels of AR uptake into the rat population and larger numbers of live rats carrying residues during the trials and for long periods after the baiting period. Neither bromadiolone nor difenacoum provided full control on any of the treated farms. In resistant areas where ineffective compounds are used there is the potential for higher levels of AR exposure to non-target animals, particularly predators of rats and scavengers of rat carcasses. Thus, resistance influences the total amount of AR available to non-targets and should be considered when dealing with rat infestations, as resistance-breakers may present a lower risk to wildlife.
Resumo:
This paper presents an integrative and spatially explicit modeling approach for analyzing human and environmental exposure from pesticide application of smallholders in the potato producing Andean region in Colombia. The modeling approach fulfills the following criteria: (i) it includes environmental and human compartments; (ii) it contains a behavioral decision-making model for estimating the effect of policies on pesticide flows to humans and the environment; (iii) it is spatially explicit; and (iv) it is modular and easily expandable to include additional modules, crops or technologies. The model was calibrated and validated for the Vereda La Hoya and was used to explore the effect of different policy measures in the region. The model has moderate data requirements and can be adapted relatively easy to other regions in developing countries with similar conditions.
Resumo:
Onshore oil production pipelines are major installations in the petroleum industry, stretching many thousands of kilometres worldwide which also contain flowline additives. The current study focuses on the effect of the flowline additives on soil physico-chemical and biological properties and quantified the impact using resilience and resistance indices. Our findings are the first to highlight deleterious effect of flowline additives by altering some fundamental soil properties, including a complete loss of structural integrity of the impacted soil and a reduced capacity to degrade hydrocarbons mainly due to: (i) phosphonate salts (in scale inhibitor) prevented accumulation of scale in pipelines but also disrupted soil physical structure; (ii) glutaraldehyde (in biocides) which repressed microbial activity in the pipeline and reduced hydrocarbon degradation in soil upon environmental exposure; (iii) the combinatory effects of these two chemicals synergistically caused severe soil structural collapse and disruption of microbial degradation of petroleum hydrocarbons.
Resumo:
Polymers are used in many everyday technologies and their degradation due to environmental exposure has lead to great interest in materials which can heal and repair themselves. In order to design new self healing polymers it's important to understand the fundamental healing mechanisms behind the material.Healable Polymer Systems will outline the key concepts and mechanisms underpinning the design and processing of healable polymers, and indicate potential directions for progress in the future development and applications of these fascinating and potentially valuable materials. The book covers the different techniques developed successfully to date for both autonomous healable materials (those which do not require an external stimulus to promote healing) and rehealable or remendable materials (those which only recover their original physical properties if a specific stimulus is applied). These include the encapsulated-monomer approach, reversible covalent bond formation, irreversible covalent bond formation and supramolecular self-assembly providing detailed insights into their chemistry.Written by leading experts, the book provides polymer scientists with a compact and readily accessible source of reference for healable polymer systems.
Resumo:
The use of potent anticogulant rodenticide ‘resistance-breakers’ is avoided due to their higher toxicity and potential to be more hazardous in the environment [6]. However, in areas where practitioners seek to control resistant rodent infestations, their use may pose less of a risk than applications of ineffective baits. Compounds to which rodents are resistant to, do not provide effective control and create a long-term source of AR in the environment. The higher quantities of anticoagulant rodenticide used show that using ineffective compounds may extend both the period and severity of exposure to non-target animals to anticoagulant rodenticides. Conversely the effective use of resistance-breakers to control anticoagulant rodenticide-resistant rat populations results in lower environmental exposure of anticoagulant rodenticides for non-targets. Of course, the relative toxicity of the different anticoagulant rodenticides will also play an important part in overall risk assessments. However, this can be outweighed by the relative exposure to different anticoagulant rodenticides in such situations.
Resumo:
The human population is now exposed on a daily basis to a multitude of environmental pollutant chemicals that would not have been present a century ago, and many of these chemicals have been detected in the human breast. The fatty nature of human breast tissue makes it a particular target for lipophilic as well as hydrophilic pollutant chemicals, which may enter the human body through oral, respiratory, or dermal routes. These chemicals possess a range of endocrine-disrupting properties and genotoxic activity, but from a breast cancer perspective the greatest concern has centered around their ability to mimic or interfere with the action of estrogen. The breast is an endocrine target organ and exposure to estrogen is a known risk factor for breast cancer.
Resumo:
Predicting metal bioaccumulation and toxicity in soil organisms is complicated by site-specific biotic and abiotic parameters. In this study we exploited tissue fractionation and digestion techniques, combined with X-ray absorption spectroscopy (XAS), to investigate the whole-body and subcellular distributions, ligand affinities, and coordination chemistry of accumulated Pb and Zn in field populations of the epigeic earthworm Lumbricus rubellus inhabiting three contrasting metalliferous and two unpolluted soils. Our main findings were (i) earthworms were resident in soils with concentrations of Pb and Zn ranging from 1200 to 27 000 mg kg(-1) and 200 to 34 000 mg kg(-1), respectively; (ii) Pb and Zn primarily accumulated in the posterior alimentary canal in nonsoluble subcellular fractions of earthworms; (iii) site-specific differences in the tissue and subcellular partitioning profiles of populations were observed, with earthworms from a calcareous site partitioning proportionally more Pb to their anterior body segments and Zn to the chloragosome-rich subcellular fraction than their acidic-soil inhabiting counterparts; (iv) XAS indicated that the interpopulation differences in metal partitioning between organs were not accompanied by qualitative differences in ligand-binding speciation, because crystalline phosphate-containing pyromorphite was a predominant chemical species in the whole-worm tissues of all mine soil residents. Differences in metal (Pb, Zn) partitioning at both organ and cellular levels displayed by field populations with protracted histories of metal exposures may reflect their innate ecophysiological responses to essential edaphic variables, such as Ca2+ status. These observations are highly significant in the challenging exercise of interpreting holistic biomarker data delivered by "omic" technologies.
Resumo:
A wide variety of exposure models are currently employed for health risk assessments. Individual models have been developed to meet the chemical exposure assessment needs of Government, industry and academia. These existing exposure models can be broadly categorised according to the following types of exposure source: environmental, dietary, consumer product, occupational, and aggregate and cumulative. Aggregate exposure models consider multiple exposure pathways, while cumulative models consider multiple chemicals. In this paper each of these basic types of exposure model are briefly described, along with any inherent strengths or weaknesses, with the UK as a case study. Examples are given of specific exposure models that are currently used, or that have the potential for future use, and key differences in modelling approaches adopted are discussed. The use of exposure models is currently fragmentary in nature. Specific organisations with exposure assessment responsibilities tend to use a limited range of models. The modelling techniques adopted in current exposure models have evolved along distinct lines for the various types of source. In fact different organisations may be using different models for very similar exposure assessment situations. This lack of consistency between exposure modelling practices can make understanding the exposure assessment process more complex, can lead to inconsistency between organisations in how critical modelling issues are addressed (e.g. variability and uncertainty), and has the potential to communicate mixed messages to the general public. Further work should be conducted to integrate the various approaches and models, where possible and regulatory remits allow, to get a coherent and consistent exposure modelling process. We recommend the development of an overall framework for exposure and risk assessment with common approaches and methodology, a screening tool for exposure assessment, collection of better input data, probabilistic modelling, validation of model input and output and a closer working relationship between scientists and policy makers and staff from different Government departments. A much increased effort is required is required in the UK to address these issues. The result will be a more robust, transparent, valid and more comparable exposure and risk assessment process. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Two clones of Daphnia magna (Standard and Ruth) were exposed for 7 days to sub-lethal concentrations of acephate (5.0 and 10.0 mg/L). Survivorship, individual growth, reproduction and the population growth rate (lambda) were evaluated over three weeks. Acetylcholinesterase (AChE) activity was measured on days 2, 7 and 21. Acephate exposure inhibited AChE activity but had no direct effect on life history (LH) traits. There was also no effect of clone on AChE activity, LH and lambda. However, a significant interaction between clone and acephate concentration was found on both fecundity and AChE inhibition at 48 h was associated with a decrease in lambda the Standard clone and an increase in lambda in clone Ruth. Therefore, our findings show that genotypic variation will influence the link between AChE activity and toxic effects at higher levels of biological organisation in D. magna. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
The established role of oestrogen in the development and progression of breast cancer raises questions concerning a potential contribution from the many chemicals in the environment which can enter the human breast and which have oestrogenic activity. A range of organochlorine pesticides and polychlorinated bipheryls possess oestrogen-mimicking properties and have been measured in human breast adipose tissue and in human milk. These enter the breast from varied environmental contamination of food, water and air, and due to their lipophilic properties can accumulate in breast fat. However, it is emerging that the breast is also exposed to a range of oestrogenic chemicals applied as cosmetics to the underarm and breast area. These cosmetics are left on the skin in the appropriate area, allowing a more direct dermal absorption route for breast exposure to oestrogenic chemicals and allowing absorbed chemicals to escape systemic metabolism. This review considers evidence in support of a functional role for the combined interactions of cosmetic chemicals with environmental oestrogens, pharmacological oestrogens, phyto-oestrogens and physiological oestrogens in the rising incidence of breast cancer.
Resumo:
Background: Depression in fathers in the postnatal period is associated with an increased risk of behavioural problems in their offspring, particularly for boys. The aim of this study was to examine for differential effects of depression in fathers on children's subsequent psychological functioning via a natural experiment comparing prenatal and postnatal exposure. Methods:In a longitudinal population cohort study (the Avon Longitudinal Study of Parents and Children (ALSPAC)) we examined the associations between depression in fathers measured in the prenatal and postnatal period (measured using the Edinburgh Postnatal Depression Scale), and later behavioural/emotional and psychiatric problems in their children, assessed at ages 31/2 and 7 years. Results: Children whose fathers were depressed in both the prenatal and postnatal periods had the highest risks of subsequent psychopathology, measured by total problems at age 31/2 years (Odds Ratio 3.55; 95% confidence interval 2.07, 6.08) and psychiatric diagnosis at age 7 years (OR 2.54; 1.19, 5.41). Few differences emerged when prenatal and postnatal depression exposure were directly compared, but when compared to fathers who were not depressed, boys whose fathers had postnatal depression only had higher rates of conduct problems aged 31/2 years (OR 2.14; 1.22, 3.72) whereas sons of the prenatal group did not (OR 1.41; .75, 2.65). These associations changed little when controlling for maternal depression and other potential confounding factors. Conclusions: The findings of this study suggest that the increased risk of later conduct problems, seen particularly in the sons of depressed fathers, maybe partly mediated through environmental means. In addition, children whose fathers are more chronically depressed appear to be at a higher risk of emotional and behavioural problems. Efforts to identify the precise mechanisms by which transmission of risk may occur should be encouraged to enable the development of focused interventions to mitigate risks for young children.
Resumo:
The development of novel intervention strategies for the control of zoonoses caused by bacteria such as Salmonella spp. in livestock requires appropriate experimental models to assess their suitability. Here, a novel porcine intestinal in vitro organ culture (IVOC) model utilizing cell crown (CC) technology (CCIVOC) (Scaffdex) was developed. The CCIVOC model was employed to investigate the characteristics of association of S. enterica serovar Typhimurium strain SL1344 with porcine intestinal tissue following exposure to a Lactobacillus plantarum strain. The association of bacteria to host cells was examined by light microscopy and electron microscopy (EM) after appropriate treatments and staining, while changes in the proteome of porcine jejunal tissues were investigated using quantitative label-free proteomics. Exposure of porcine intestinal mucosal tissues to L. plantarum JC1 did not reduce the numbers of S. Typhimurium bacteria associating to the tissues but was associated with significant (P < 0.005) reductions in the percentages of areas of intestinal IVOC tissues giving positive staining results for acidic mucins. Conversely, the quantity of neutrally charged mucins present within the goblet cells of the IVOC tissues increased significantly (P < 0.05). In addition, tubulin- was expressed at high levels following inoculation of jejunal IVOC tissues with L. plantarum. Although L. plantarum JC1 did not reduce the association of S. Typhimurium strain SL1344 to the jejunal IVOC tissues, detection of increased acidic mucin secretion, host cytoskeletal rearrangements, and proteins involved in the porcine immune response demonstrated that this strain of L. plantarum may contribute to protecting the pig from infections by S. Typhimurium or other pathogens.
Resumo:
Many environmental compounds with oestrogenic activity are measurable in the human breast and oestrogen is a known factor in breast cancer development. Exposure to environmental oestrogens occurs through diet, household products and cosmetics, but concentrations of single compounds in breast tissue are generally lower than needed for assayable oestrogenic responses. Results presented here and elsewhere demonstrate that in combination, chemicals can give oestrogenic responses at lower concentrations, which suggests that in the breast, low doses of many compounds could sum to give a significant oestrogenic stimulus. Updated incidence figures show a continued disproportionate incidence of breast cancer in Britain in the upper outer quadrant of the breast which is also the region to which multiple cosmetic chemicals are applied. CONCLUSION: If exposure to complex mixtures of oestrogenic chemicals in consumer products is a factor in breast cancer development, then a strategy for breast cancer prevention could become possible.
Resumo:
The influence of the environment and environmental change is largely unrepresented in standard theories of migration, whilst recent debates on climate change and migration focus almost entirely on displacement and perceive migration to be a problem. Drawing on an increasing evidence base that has assessed elements of the influence of the environment on migration, this paper presents a new framework for understanding the effect of environmental change on migration. The framework identifies five families of drivers which affect migration decisions: economic, political, social, demographic and environmental drivers. The environment drives migration through mechanisms characterised as the availability and reliability of ecosystem services and exposure to hazard. Individual migration decisions and flows are affected by these drivers operating in combination, and the effect of the environment is therefore highly dependent on economic, political, social and demographic context. Environmental change has the potential to affect directly the hazardousness of place. Environmental change also affects migration indirectly, in particular through economic drivers, by changing livelihoods for example, and political drivers, through affecting conflicts over resources, for example. The proposed framework, applicable to both international and internal migration, emphasises the role of human agency in migration decisions, in particular the linked role of family and household characteristics on the one hand, and barriers and facilitators to movement on the other in translating drivers into actions. The framework can be used to guide new research, assist with the evaluation of policy options, and provide a context for the development of scenarios representing a range of plausible migration futures.
Resumo:
In previous work, Salmonella enterica serovar Typhimurium strain SL1344 was exposed to sublethal concentrations of three widely used farm disinfectants in daily serial passages for 7 days in an attempt to investigate possible links between the use of disinfectants and antimicrobial resistance. Stable variants OXCR1, QACFGR2, and TOPR2 were obtained following treatment with an oxidizing compound blend, a quaternary ammonium disinfectant containing formaldehyde and glutaraldehyde, and a tar acid-based disinfectant, respectively. All variants exhibited ca. fourfold-reduced susceptibility to ciprofloxacin, chloramphenicol, tetracycline, and ampicillin. This coincided with reduced levels of outer membrane proteins for all strains and high levels of AcrAB-To1C for OXCR1 and QACFGR2, as demonstrated by two-dimensional high-performance liquid chromatography-mass spectrometry. The protein profiles of OXCR1 and QACFGR2 were similar, but they were different from that of TOPR2. An array of different proteins protecting against oxidants, nitroaromatics, disulfides, and peroxides were overexpressed in all strains. The growth and motility of variants were reduced compared to the growth and motility of the parent strain, the expression of several virulence proteins was altered, and the invasiveness in an enteric epithelial cell line was reduced. The colony morphology of OXCR1 and QACFGR2 was smooth, and both variants exhibited a loss of modal distribution of the lipopolysaccharide O-antigen chain length, favoring the production of short O-antigen chain molecules. Metabolic changes were also detected, suggesting that there was increased protein synthesis and a shift from oxidative phosphorylation to substrate level phosphorylation. In this study, we obtained evidence that farm disinfectants can select for strains with reduced susceptibility to antibiotics, and here we describe changes in protein expression in such strains.