42 resultados para Entry inhibitors
em CentAUR: Central Archive University of Reading - UK
Resumo:
The AMPA receptor (AMPAR) subunit GluR2, which regulates excitotoxicity and the inflammatory cytokine tumour necrosis factor alpha (TNF alpha) have both been implicated in motor neurone vulnerability in Amyotrophic Lateral Sclerosis/Motor Neurone Disease. TNF alpha has been reported to increase cell surface expression of AMPAR subunits to increase synaptic strength and enhance excitotoxicity, but whether this mechanism occurs in motor neurones is unknown. We used primary cultures of mouse motor neurones and cortical neurones to examine the interaction between TNF alpha receptor activation, GluR2 availability, AMPAR-mediated calcium entry and susceptibility to excitotoxicity. Short exposure to a physiologically relevant concentration of TNFalpha (10 ng/ml, 15 min) caused a marked redistribution of both GluR1 and GluR2 to the cell surface as determined by cell surface biotinylation and immunofluorescence. Using Fura-2 AM microfluorimetry we showed that exposure to TNFalpha caused a rapid reduction in the peak amplitude of AMPA-mediated calcium entry in a PI3-kinase and p38 kinase-dependent manner, consistent with increased insertion of GluR2-containing AMPAR into the plasma membrane. This resulted in a protection of motor neurones against kainate-induced cell death. Our data therefore, suggests that TNF alpha acts primarily as a physiological regulator of synaptic activity in motor neurones rather than a pathological drive in ALS
Resumo:
For enveloped viruses, genome entry into the target cell involves two major steps: virion binding to the cell-surface receptor and fusion of the virion and cell membranes. Virus-cell membrane fusion is mediated by the virus envelope complex, and its fusogenicity is the result of an active virus-cell interaction process that induces conformation changes within the envelope. For some viruses, such as influenza, exposure to an acidic milieu within the cell during the early steps of infection triggers the necessary structural changes. However, for other pathogens which are not exposed to such environmental stress, activation of fusogenicity can result from precise thiol/disulfide rearrangements mediated by either an endogenous redox autocatalytic isomerase or a cell-associated oxidoreductase. Study of the activation of HIV envelope fusogenicity has revealed new knowledge about how redox changes within a viral envelope trigger fusion. We discuss these findings and their implication for anti-HIV therapy. In addition, to compare and contrast the situation outlined for HIV with an enveloped virus that can fuse with the cell plasma membrane independent of the redox status of its envelope protein, we review parallel data obtained on SARS coronavirus entry.
Resumo:
The capacity of the surface glycoproteins of enveloped viruses to mediate virus/cell binding and membrane fusion requires a proper thiol/disulfide balance. Chemical manipulation of their redox state using reducing agents or free sulfhydryl reagents affects virus/cell interaction. Conversely, natural thiol/disulfide rearrangements often occur during the cell interaction to trigger fusogenicity, hence the virus entry. We examined the relationship between the redox state of the 20 cysteine residues of the SARS-CoV (severe acute respiratory syndrome coronavirus) Spike glycoprotein S1 subdomain and its functional properties. Mature S1 exhibited similar to 4 unpaired cysteines, and chemically reduced S1 displaying up to similar to 6 additional unpaired cysteines still bound ACE2 and enabled fusion. In addition, virus/cell membrane fusion occurred in the presence of sulfhydryl-blocking reagents and oxidoreductase inhibitors. Thus, in contrast to various viruses including HIV (human immunodeficiency virus) examined in parallel, the functions of the SARS-CoV Spike glycoprotein exhibit a significant and surprising independence of redox state, which may contribute to the wide host range of the virus. These data suggest clues for molecularly engineering vaccine immunogens.
Resumo:
GP catalyzes the phosphorylation of glycogen to Glc-1-P. Because of its fundamental role in the metabolism of glycogen, GP has been the target for a systematic structure-assisted design of inhibitory compounds, which could be of value in the therapeutic treatment of type 2 diabetes mellitus. The most potent catalytic-site inhibitor of GP identified to date is spirohydantoin of glucopyranose (hydan). In this work, we employ MD free energy simulations to calculate the relative binding affinities for GP of hydan and two spirohydantoin analogues, methyl-hydan and n-hydan, in which a hydrogen atom is replaced by a methyl- or amino group, respectively. The results are compared with the experimental relative affinities of these ligands, estimated by kinetic measurements of the ligand inhibition constants. The calculated binding affinity for methyl-hydan (relative to hydan) is 3.75 +/- 1.4 kcal/mol, in excellent agreement with the experimental value (3.6 +/- 0.2 kcal/mol). For n-hydan, the calculated value is 1.0 +/- 1.1 kcal/mol, somewhat smaller than the experimental result (2.3 +/- 0.1 kcal/mol). A free energy decomposition analysis shows that hydan makes optimum interactions with protein residues and specific water molecules in the catalytic site. In the other two ligands, structural perturbations of the active site by the additional methyl- or amino group reduce the corresponding binding affinities. The computed binding free energies are sensitive to the preference of a specific water molecule for two well-defined positions in the catalytic site. The behavior of this water is analyzed in detail, and the free energy profile for the translocation of the water between the two positions is evaluated. The results provide insights into the role of water molecules in modulating ligand binding affinities. A comparison of the interactions between a set of ligands and their surrounding groups in X-ray structures is often used in the interpretation of binding free energy differences and in guiding the design of new ligands. For the systems in this work, such an approach fails to estimate the order of relative binding strengths, in contrast to the rigorous free energy treatment.
Resumo:
Glycogen phosphorylase (GP) is currently exploited as a target for inhibition of hepatic glycogenolysis under high glucose conditions. Spirohydantoin of glucopyranose and N-acetyl-beta-D-glucopyranosylamine have been identified as the most potent inhibitors of GP that bind at the catalytic site. Four spirohydantoin and three beta-D-glucopyranosylamine analogs have been designed, synthesized and tested for inhibition of GP in kinetic experiments. Depending on the functional group introduced, the K(i) values varied from 16.5 microM to 1200 microM. In order to rationalize the kinetic results, we determined the crystal structures of the analogs in complex with GP. All the inhibitors bound at the catalytic site of the enzyme, by making direct and water-mediated hydrogen bonds with the protein and by inducing minor movements of the side chains of Asp283 and Asn284, of the 280s loop that blocks access of the substrate glycogen to the catalytic site, and changes in the water structure in the vicinity of the site. The differences observed in the Ki values of the analogs can be interpreted in terms of variations in hydrogen bonding and van der Waals interactions, desolvation effects, ligand conformational entropy, and displacement of water molecules on ligand binding to the catalytic site.
Resumo:
The cyclin/cyclin-dependent kinase (Cdk) complexes and the Cdk inhibitors (CDKI) are crucial regulators of cell cycle progression in all eukaryotic cells. Using rat cardiac myocytes as a model system, this chapter provides a detailed account of methods that can be employed to measure both cyclin/Cdk activity in cells and the extent of CDKI inhibitory activity present in a particular cell type.
Resumo:
The mechanism by which Ca2+ enters electrically non-excitable cells is unclear. The sensitivity of the Ca2+ entry pathway in electrically non-excitable cells to inhibition by extracellular Ni2+ was used to direct the synthesis of a library of simple, novel compounds. These novel compounds inhibit Ca2+ entry into and, consequently, proliferation of several cancer cell lines. They showed stereoselective inhibition of proliferation and Ca2+ influx with identical stereoselective inhibition of heterologously expressed Cav3.2 isoform of T-type Ca2+ channels. Proliferation of human embryonic kidney (HEK)293 cells transfected with the Cav3.2 Ca2+ channel was also blocked. Cancer cell lines sensitive to our compounds express message for the Cav3.2 T-type Ca2+ channel isoform, its delta25B splice variant, or both, while a cell line resistant to our compounds does not. These observations raise the possibility that clinically useful drugs can be designed based upon the ability to block these Ca2+ channels.
Resumo:
Platelets play a substantial role in cardiovascular disease, and for many years there has been a search for dietary components that are able to inhibit platelet function and therefore decrease the risk of cardiovascular disease. Platelets can be inhibited by alcohol, dietary fats and some antioxidants, including a group of compounds, the polyphenols, found in fruits and vegetables. A number of these compounds have been shown to inhibit platelet function both in vitro and in vivo. In the present study the effects of the hydroxycinnamates and the flavonoid quercetin on platelet activation and cell signalling in vitro were investigated. The hydroxycinnamates inhibited platelet function, although not at levels that can be achieved in human plasma by dietary intervention. However, quercetin inhibited platelet aggregation at levels lower than those previously reported. Quercetin was also found to inhibit intracellular Ca mobilisation and whole-cell tyrosine protein phosphorylation in platelets, which are both processes essential for platelet activation. The effect of polyphenols on platelet aggregation in vivo was also investigated. Twenty subjects followed a low-polyphenol diet for 3 d before and also during supplementation. All subjects were supplemented with a polyphenol-rich meal every lunchtime for 5 d. Platelet aggregation and plasma flavonols were measured at baseline and after 5 d of dietary supplementation. Total plasma flavonoids increased significantly after the dietary intervention period (P = 0.001). However, no significant changes in ex vivo platelet aggregation were observed. Further investigation of the effects of individual polyphenolic compounds on platelet function, both in vitro and in vivo, is required in order to elucidate their role in the relationship between diet and the risk of cardiovascular disease.
Resumo:
The rapid synthesis of functionalised morpholines and [1,4]-oxazepanes displaying up to three stereocentres, by reductive amination reactions between carbohydrate derived dialdehydes and a range of amines, is described. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
[GRAPHICS] The synthesis of unsaturated beta-linked C-disaccharides by the Lewis acid-mediated reaction of 3-O-acetylated glycals with monosaccharide-derived alkenes is described. Deprotection and selective hydrogenation of an exocyclic carbon-carbon double, in the presence of an endocyclic double bond, for representative targets is also illustrated.
Resumo:
This review provides a discussion of recent developments in the asymmetric hetero Diels-Alder reaction (AHDAR), with particular emphasis on the synthesis of carbohydrates, their derivatives, and inhibitors of carbohydrate processing enzymes.
Resumo:
Background: Prolonged and exaggerated postprandial plasma triacylglycerol (TAG) concentrations are considered as an independent risk factor for coronary artery disease. Western populations eat many meals at regular intervals, and can be in a postprandial state for at least 17h of a 24h period. After consuming 2 meals an early plasma TAG peak has been observed after the second meal, the origin of which is unclear. Aim of the study: To test the hypothesis that the early TAG peak observed following sequential meals was of intestinal origin and represented fat derived from the previous meal. Methods: Postprandial plasma lipaemic responses of 17 healthy postmenopausal women were studied by giving a test breakfast followed by a lunch. Watermiscible retinyl palmitate (RP) was added to the breakfast, but not the lunch test meal. Plasma TAG, retinyl esters (RE) and apo B-48 were determined for a 10h period following breakfast. Results: In response to the test meals, RE, apo B-48 and TAG showed multiple peaks. Despite omission of RP from the lunch, RE showed an early peak response after ingestion of lunch in 15 of 17 subjects. The peak response after lunch of all three markers appeared significantly earlier compared with their respective peak responses after the breakfast (P < 0.0001). The area of RE response after lunch was significantly correlated with the RE lipaemic response to the breakfast (r = 0.67; P < 0.004) and to the fasting TAG concentration (r = 0.48; P < 0.05). Conclusions: Since the lunch did not contain RP, the distinctive second influx of RE after lunch was believed to have originated from the breakfast. This, together with the fact that all three markers showed an earlier response to the lunch than the breakfast, supports the view that ingestion of a second meal provokes entry of fat from the previous meal, from an as yet unidentified site (gut, enterocytes, lymph). The results indicate that the degree of TAG "storage" from previous meals might be a function of TAG tolerance and provide a possible site of regulation of the entry of fat into the systemic circulation.
Resumo:
Campylobacter jejuni NCTC 11168 does not exhibit the general increase in cellular stress resistance on entry into stationary phase that is seen in most other bacteria. This is consistent with the lack of global stationary phase regulatory elements in this organism. deduced from an analysis of its genome sequence. We now show that C. jejuni NCTC 11168 does undergo certain changes in stationary phase, of a pattern not previously described. As cells entered stationary phase there was a change in membrane fatty acid composition, principally a decrease in the proportion of unsaturated fatty acids and an increase in the content of cyclopropane and short-chain fatty acids. These changes in membrane composition were accompanied by an increase in the resilience of the cell membrane towards loss of integrity caused by pressure and an increase in cellular pressure resistance. By contrast. there were no major changes in resistance to acid or heat treatment. A similar pattern of changes in stress resistance on entry, into stationary phase was seen in C. jejuni NCTC 11351, the type strain. These changes appear to represent a restricted Physiological response to the conditions existing in stationary phase cultures, in an organism having limited capacity for genetic regulation and adaptation to environment. © 2004 Elsevier B.V. All rights reserved.