11 resultados para Engineering, Biomedical|Physics, Optics
em CentAUR: Central Archive University of Reading - UK
Resumo:
SMPS and DMS500 analysers were used to measure particulate size distributions in the exhaust of a fully annular aero gas turbine engine at two operating conditions to compare and analyse sources of discrepancy. A number of different dilution ratio values were utilised for the comparative analysis, and a Dekati hot diluter operating at a temperature of 623°K was also utilised to remove volatile PM prior to measurements being made. Additional work focused on observing the effect of varying the sample line temperatures to ascertain the impact. Explanations are offered for most of the trends observed, although a new, repeatable event identified in the range from 417°K to 423°K – where there was a three order of magnitude increase in the nucleation mode of the sample – requires further study.
Resumo:
We compare the use of plastically compressed collagen gels to conventional collagen gels as scaffolds onto which corneal limbal epithelial cells (LECs) are seeded to construct an artificial corneal epithelium. LECs were isolated from bovine corneas (limbus) and seeded onto either conventional uncompressed or novel compressed collagen gels and grown in culture. Scanning electron microscopy (SEM) results showed that fibers within the uncompressed gel were loose and irregularly ordered, whereas the fibers within the compressed gel were densely packed and more evenly arranged. Quantitative analysis of LECs expansion across the surface of the two gels showed similar growth rates (p > 0.05). Under SEM, the LECs, expanded on uncompressed gels, showed a rough and heterogeneous morphology, whereas on the compressed gel, the cells displayed a smooth and homogeneous morphology. Transmission electron microscopy (TEM) results showed the compressed scaffold to contain collagen fibers of regular diameter and similar orientation resembling collagen fibers within the normal cornea. TEM and light microscopy also showed that cell–cell and cell–matrix attachment, stratification, and cell density were superior in LECs expanded upon compressed collagen gels. This study demonstrated that the compressed collagen gel was an excellent biomaterial scaffold highly suited to the construction of an artificial corneal epithelium and a significant improvement upon conventional collagen gels.
Resumo:
The experiments were designed to use photochemically cross-linked plastically compressed collagen (PCPCC) gel to support corneal epithelial cells. A plastically compressed collagen (PCC) scaffold was photo cross-linked by UVA in the presence of riboflavin to form a biomaterial with optimal mechanical properties. The breaking force, rheology, surgical suture strength, transparency, ultrastructure, and cell-based biocompatibility were compared between PCPCC and PCC gels. The breaking force increased proportionally with an increased concentration of riboflavin. The stress required to reach breaking point of the PCPCC scaffolds was over two times higher compared to the stress necessary to break PCC scaffolds in the presence of 0.1% riboflavin. Rheology results indicated that the structural properties of PCC remain unaltered after UVA cross-linking. The PCC gels were more easily broken than PCPCC gels when sutured on to bovine corneas. The optical density values of PCPCC and PCC showed no significant differences (p > 0.05). SEM analyses showed that the collagen fibres within the PCPCC gels were similar in morphology to PCC gels. No difference in cell-based biocompatibility was seen between the PCPCC and PCC scaffolds in terms of their ability to support the ex vivo expansion of corneal epithelial cells or their subsequent differentiation evidenced by similar levels of cytokeratin 14. In conclusion, PCPCC scaffold is an optimal biomaterial for use in therapeutic tissue engineering of the cornea.
Resumo:
We discuss the modelling of dielectric responses of amorphous biological samples. Such samples are commonly encountered in impedance spectroscopy studies as well as in UV, IR, optical and THz transient spectroscopy experiments and in pump-probe studies. In many occasions, the samples may display quenched absorption bands. A systems identification framework may be developed to provide parsimonious representations of such responses. To achieve this, it is appropriate to augment the standard models found in the identification literature to incorporate fractional order dynamics. Extensions of models using the forward shift operator, state space models as well as their non-linear Hammerstein-Wiener counterpart models are highlighted. We also discuss the need to extend the theory of electromagnetically excited networks which can account for fractional order behaviour in the non-linear regime by incorporating nonlinear elements to account for the observed non-linearities. The proposed approach leads to the development of a range of new chemometrics tools for biomedical data analysis and classification.
Resumo:
Hydrogels have become very popular due to their unique properties such as high water content, softness, flexibility and biocompatibility. Natural and synthetic hydrophilic polymers can be physically or chemically cross-linked in order to produce hydrogels. Their resemblance to living tissue opens up many opportunities for applications in biomedical areas. Currently, hydrogels are used for manufacturing contact lenses, hygiene products, tissue engineering scaffolds, drug delivery systems and wound dressings. This review provides an analysis of their main characteristics and biomedical applications. From Wichterle’s pioneering work to the most recent hydrogel-based inventions and products on the market, it provides the reader with a detailed introduction to the topic and perspective on further potential developments.
Resumo:
Modification of graphene to open a robust gap in its electronic spectrum is essential for its use in field effect transistors and photochemistry applications. Inspired by recent experimental success in the preparation of homogeneous alloys of graphene and boron nitride (BN), we consider here engineering the electronic structure and bandgap of C2xB1−xN1−x alloys via both compositional and configurational modification. We start from the BN end-member, which already has a large bandgap, and then show that (a) the bandgap can in principle be reduced to about 2 eV with moderate substitution of C (x < 0.25); and (b) the electronic structure of C2xB1−xN1−x can be further tuned not only with composition x, but also with the configuration adopted by C substituents in the BN matrix. Our analysis, based on accurate screened hybrid functional calculations, provides a clear understanding of the correlation found between the bandgap and the level of aggregation of C atoms: the bandgap decreases most when the C atoms are maximally isolated, and increases with aggregation of C atoms due to the formation of bonding and anti-bonding bands associated with hybridization of occupied and empty defect states. We determine the location of valence and conduction band edges relative to vacuum and discuss the implications on the potential use of 2D C2xB1−xN1−x alloys in photocatalytic applications. Finally, we assess the thermodynamic limitations on the formation of these alloys using a cluster expansion model derived from first-principles.