18 resultados para Energy dispersive X-ray spectroscopy
em CentAUR: Central Archive University of Reading - UK
Resumo:
Solvent influences on the crystallization of polymorph and hydrate forms of the nootropic drug piracetam (2-oxo-pyrrolidineacetamide) were investigated from water, methanol, 2-propanol, isobutanol, and nitromethane. Crystal growth profiles of piracetam polymorphs were constructed using time-resolved diffraction snapshots collected for each solvent system. Measurements were performed by in situ energy dispersive X-ray diffraction recorded in Station 16.4 at the synchrotron radiation source (SRS) at Daresbury Laboratory, CCLRC UK. Crystallizations from methanol, 2-propanol, isobutanol, and nitromethane progressed in a similar fashion with the initial formation of form I which then converted relatively quickly to form II with form III being generated upon further cooling. However, considerable differences were observed for the polymorphs lifetime and both the rate and temperature of conversion using the different solvents. The thermodynamically unstable form I was kinetically favored in isobutanol and nitromethane where traces of this polymorph were observed below 10 degrees C. In contrast, the transformation of form II and subsequent growth of form III were inhibited in 2-propanol and nitromethane solutions. Aqueous solutions produced hydrate forms of piracetam which are different from the reported monohydrate; this crystallization evolved through successive generation of transient structures which transformed upon exchange of intramolecular water between the liquid and crystalline phases. (c) 2007 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 96:1069-1078, 2007.
Resumo:
Background and Aims Leafy vegetable Brassica crops are an important source of dietary calcium (Ca) and magnesium (Mg) and represent potential targets for increasing leaf Ca and Mg concentrations through agronomy or breeding. Although the internal distribution of Ca and Mg within leaves affects the accumulation of these elements, such data are not available for Brassica. The aim of this study was to characterize the internal distribution of Ca and Mg in the leaves of a vegetable Brassica and to determine the effects of altered exogenous Ca and Mg supply on this distribution. Methods Brassica rapa ssp. trilocularis ‘R-o-18’ was grown at four different Ca:Mg treatments for 21 d in a controlled environment. Concentrations of Ca and Mg were determined in fully expanded leaves using inductively coupled plasma-mass spectrometry (ICP-MS). Internal distributions of Ca and Mg were determined in transverse leaf sections at the base and apex of leaves using energy-dispersive X-ray spectroscopy (EDS) with cryo-scanning electron microscopy (cryo-SEM). Key Results Leaf Ca and Mg concentrations were greatest in palisade and spongy mesophyll cells, respectively, although this was dependent on exogenous supply. Calcium accumulation in palisade mesophyll cells was enhanced slightly under high Mg supply; in contrast, Mg accumulation in spongy mesophyll cells was not affected by Ca supply. Conclusions The results are consistent with Arabidopsis thaliana and other Brassicaceae, providing phenotypic evidence that conserved mechanisms regulate leaf Ca and Mg distribution at a cellular scale. The future study of Arabidopsis gene orthologues in mutants of this reference B. rapa genotype will improve our understanding of Ca and Mg homeostasis in plants and may provide a model-to-crop translation pathway for targeted breeding.
Resumo:
Samples containing red pigment have been collected from two different archaeological sites dating to the Neolithic (Çatalhöyük in Turkey and Sheikh-e Abad in Iran) and have been analysed by a range of techniques. Sub-samples were examined by IR spectroscopy and X-ray diffraction, whilst thin sections were studied using optical polarising microscopy, synchrotron based IR microscopy and environmental scanning electron microscopy with energy dispersive X-ray analysis. Thin layers of red paint in a wall painting from Çatalhöyük were found to contain ochre (hematite and clay) as well as an unexpected component, grains of red and colourless obsidian, which have not been identified in any previous studies of the wall paintings at Çatalhöyük. These small grains of obsidian may have improved the reflective properties of the paint and made the artwork more vivid in the darkness of the buildings. Analysis of a roughly shaped ball of red sediment found on a possible working surface at Sheikh-e Abad revealed that the cause of the red colouring was the mineral hematite, which was probably from a source of terra rossa sediment in the local area. The results of this work suggest it is unlikely that this had been altered by the Neolithic people through mixing with other minerals.
Resumo:
Wall plaster sequences from the Neolithic town of Çatalhöyük have been analysed and compared to three types of natural sediment found in the vicinity of the site, using a range of analytical techniques. Block samples containing the plaster sequences were removed from the walls of several different buildings on the East Mound. Sub-samples were examined by IR spectroscopy, X-ray diffraction and X-ray fluorescence to determine the overall mineralogical and elemental composition, whilst thin sections were studied using optical polarising microscopy, IR Microscopy and Environmental Scanning Electron Microscopy with Energy Dispersive X-ray analysis. The results of this study have shown that there are two types of wall plaster found in the sequences and that the sediments used to produce these were obtained from at least two distinct sources. In particular, the presence of clay, calcite and magnesian calcite in the foundation plasters suggested that these were prepared predominantly from a marl source. On the other hand, the finishing plasters were found to contain dolomite with a small amount of clay and no calcite, revealing that softlime was used in their preparation. Whilst marl is located directly below and around Çatalhöyük, the nearest source of softlime is 6.5 km away, an indication that the latter was important to the Neolithic people, possibly due to the whiter colour (5Y 8/1) of this sediment. Furthermore, the same two plaster types were found on each wall of Building 49, the main building studied in this research, and in all five buildings investigated, suggesting that the use of these sources was an established practice for the inhabitants of several different households across the site.
Resumo:
Buffalo milk contains (40–60 %) more protein, fat and calcium than cows’ milk. These constituents were enhanced by ultrafiltration (UF) of cows’ milk to give a product with similar levels to those found in the buffalo milk. Mozzarella-type curd was made from buffalo, cows’ and UF cows’ milk to compare the overall curd yield and quality. The curd yield on both dry and wet weight basis, curd moisture content and overall curd fat retention were found to be higher in the UF cows’ milk than for either the buffalo or the cows’ milk preparations. The minimum whey fat losses occurred in the UF cows’ curd when compared to the cows’ and the buffalo curd. The whey protein losses were found to be higher in the UF cows’ curd than those for the buffalo and the cows’ curds. The total mineral content of the curd was also higher in the UF cows’ milk than that found in either the buffalo or the cows’ milk. SEM micrographs showed that casein micelles sizes were different in the two different types of milk. Casein micelles were also observed to be deformed in the UF cows’ milk samples. UF cows’ milk contained higher amounts of both the αs1- and αs2-casein moieties than either the buffalo or the cows’ milk. Buffalo milk was found to contain a higher concentration of β-casein than either the UF cows’ or untreated cows’ milk samples. Gel strength was found to be higher in the resultant buffalo curd than for curds made from either native cows’ milk or those made from UF cows’ milk. The mineral distribution was also different in the three different types of bovine milk, measured by energy-dispersive X-ray (EDX) analysis. Differences in the curd quality observed between the buffalo and the cows’ milk appear to result from the differences in casein composition and overall micelle structure, rather than casein concentration alone.
Resumo:
Glucosinolates are multi-functional plant secondary metabolites which play a vital role in plant defence and are, as dietary compounds, important to human health and livestock well-being. Knowledge of the tissue-specific regulation of their biosynthesis and accumulation is essential for plant breeding programs. Here, we report that in Arabidopsis thaliana, glucosinolates are accumulated differentially in specific cells of reproductive organs. Using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI), distribution patterns of three selected compounds, 4-methylsulfinylbutyl (glucoraphanin), indol-3-ylmethyl (glucobrassicin), and 4-benzoyloxybutyl glucosinolates, were mapped in the tissues of whole flower buds, sepals and siliques. The results show that tissue localization patterns of aliphatic glucosinolate glucoraphanin and 4-benzoyloxybutyl glucosinolate were similar, but indole glucosinolate glucobrassicin had different localisation, indicating a possible difference in function. The high resolution images obtained by a complementary approach, cryo-SEM Energy Dispersive X-ray analysis (cryo-SEM-EDX), confirmed increased concentration of sulphur in areas with elevated amounts of glucosinolates, and allowed identifying the cell types implicated in accumulation of glucosinolates. High concentration of sulphur was found in S-cells adjacent to the phloem in pedicels and siliques, indicating the presence of glucosinolates. Moreover, both MALDI MSI and cryo-SEM-EDX analyses indicated accumulation of glucosinolates in cells on the outer surface of the sepals, suggesting that a layer of glucosinolate-accumulating epidermal cells protects the whole of the developing flower, in addition to the S-cells, which protect the phloem. This research demonstrates the high potential of MALDI MSI for understanding the cell-specific compartmentation of plant metabolites and its regulation.
Resumo:
Ochre samples excavated from the neolithic site at Qatalhoyuk, Turkey have been compared with "native" ochres from Clearwell Caves, UK using infrared spectroscopy backed up by Raman spectroscopy, scanning electron microscopy (with energy-dispersive X-rays (EDX) analysis), powder X-ray diffraction, diffuse reflection UV-Vis and atomic absorption spectroscopies. For the Clearwell Caves ochres, which range in colour from yellow-orange to red-brown, it is shown that the colour is related to the nature of the chromophore present and not to any differences in particle size. The darker red ochres contain predominantly haematite while the yellow ochre contains only goethite. The ochres from Qatalhoyuk contain only about one-twentieth of the levels of iron found in the Clearwell Caves ochres. The iron oxide pigment (haematite in all cases studied here) has been mixed with a soft lime plaster which also contains calcite and silicate (clay) minerals. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Ochre samples excavated from the neolithic site at Qatalhoyuk, Turkey have been compared with "native" ochres from Clearwell Caves, UK using infrared spectroscopy backed up by Raman spectroscopy, scanning electron microscopy (with energy-dispersive X-rays (EDX) analysis), powder X-ray diffraction, diffuse reflection UV-Vis and atomic absorption spectroscopies. For the Clearwell Caves ochres, which range in colour from yellow-orange to red-brown, it is shown that the colour is related to the nature of the chromophore present and not to any differences in particle size. The darker red ochres contain predominantly haematite while the yellow ochre contains only goethite. The ochres from Qatalhoyuk contain only about one-twentieth of the levels of iron found in the Clearwell Caves ochres. The iron oxide pigment (haematite in all cases studied here) has been mixed with a soft lime plaster which also contains calcite and silicate (clay) minerals. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Near ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS) is used to study the chemical state of methane oxidation catalysts in-situ. Al2O3{supported Pd catalysts are prepared with different particle sizes ranging from 4 nm to 10 nm. These catalysts were exposed to conditions similar to those used in the partial oxidation of methane (POM) to syn-gas and simultaneously monitored by NAP-XPS and mass spectrometry. NAP-XPS data show changes in the oxidation state of the palladium as the temperature in- creases, from metallic Pd0 to PdO, and back to Pd0. Mass spectrometry shows an increase in CO production whilst the Pd is in the oxide phase, and the metal is reduced back under presence of newly formed H2. A particle size effect is observed, such that CH4 conversion starts at lower temperatures with larger sized particles from 6 nm to 10 nm. We find that all nanoparticles begin CH4 conversion at lower temperatures than polycrystalline Pd foil.
Resumo:
In the past two decades, the geometric pathways involved in the transformations between inverse bicontinuous cubic phases in amphiphilic systems have been extensively theoretically modeled. However, little experimental data exists on the cubic-cubic transformation in pure lipid systems. We have used pressure-jump time-resolved X-ray diffraction to investigate the transition between the gyroid Q(II)(G) and double-diamond Q(II)(D) phases in mixtures of 1-monoolein in 30 wt% water. We find for this system that the cubic-cubic transition occurs without any detectable intermediate structures. In addition, we have determined the kinetics of the transition, in both the forward and reverse directions, as a function of pressure-jump amplitude, temperature, and water content. A recently developed model allows (at least in principle) the calculation of the activation energy for lipid phase transitions from such data. The analysis is applicable only if kinetic reproducibility is achieved, at least within one sample, and achievement of such kinetic reproducibility is shown here, by carrying out prolonged pressure-cycling. The rate of transformation shows clear and consistent trends with pressure-jump amplitude, temperature, and water content, all of which are shown to be in agreement with the effect of the shift in the position of the cubic-cubic phase boundary following a change in the thermodynamic parameters.
Resumo:
The novel cryptand in/out-3, containing two tripyrrolemethane units briged by three 1,3- diisopropylidenbenzene arms was readily synthesized by a convergent three-step synthesis. It binds fluoride by inclusion with excellent selectivity with respect to a number of other tested anions. The structure of the free receptor and that of its fluoride complex were investigated in solution by NMR spectroscopy. The solid state X-ray structure of the free cryptand 3 was also determined.
Resumo:
The lithium salt of the anionic SPS pincer ligand composed of a central hypervalent lambda(4)-phosphinine ring bearing two ortho-positioned diphenylphosphine sulfide side arms reacts with [Mn(CO)(5)Br] to give fac-[Mn(SPS)(CO)(3)], This isomer can be converted photochemicaily to mer-[Mn(SPS)(CO)(3)], with a very high quantum yield (0.80 +/- 0.05). The thermal backreaction is slow (taking ca. 8 h at room temperature), in contrast to rapid electrodecatalyzed mer-to-fac isomerization triggered by electrochemical reduction of mer-[Mn(SPS)(CO)(3)]. Both geometric isomers of [Mn(SPS)(CO)(3)] have been characterized by X-ray crystallography. Both isomers show luminescence from a low-lying (IL)-I-3 (SPS-based) excited state. The light emission of fac-[Mn(SPS)(CO)(3)] is largely quenched by the efficient photoisomerization occurring probably from a low-lying Mn-CO dissociative excited state. Density functional theory (DFT) and time-dependent DFT calculations describe the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of fac- and mer-[Mn(CO)(3)(SPS)] as ligand-centered orbitals, largely localized on the phosphinine ring of the SPS pincer ligand. In line with the ligand nature of its frontier orbitals, fac-[Mn(SPS)(CO)(3)] is electrochemically reversibly oxidized and reduced to the corresponding radical cation and anion, respectively. The spectroscopic (electron paramagnetic resonance, IR, and UV-vis) characterization of the radical species provides other evidence for the localization of the redox steps on the SIPS ligand. The smaller HOMO-LUMO energy difference in the case of mer-[Mn(CO)(3)(SPS)], reflected in the electronic absorption and emission spectra, corresponds with its lower oxidation potential compared to that of the fac isomer. The thermodynamic instability of mer-[Mn(CO)(3)(SPS)], confirmed by the DFT calculations, increases upon one-electron reduction and oxidation of the complex.
Resumo:
The paper presents an analysis of WAXS (wide-angle X-ray scattering) data which aids an understanding of the structure of non-crystalline polymers. Experimental results are compared with calculations of scattering from possible models. Evidence is presented which supports the view that the chains in molten PE do not lie parallel but have a conformation in accord with the predictions of energy calculations. However, the evidence indicates that in “molten” PTFE the chains lie parallel over distances well in excess of their diameters. WAXS-based proposals are made for the conformations of a-PMMA and a-PS.