13 resultados para Endoscopic Anterior Instrumentation
em CentAUR: Central Archive University of Reading - UK
Resumo:
As improvements to the optical design of spectrometer and radiometer instruments evolve with advances in detector sensitivity, use of focal plane detector arrays and innovations in adaptive optics for large high altitude telescopes, interest in mid-infrared astronomy and remote sensing applications have been areas of progressive research in recent years. This research has promoted a number of developments in infrared coating performance, particularly by placing increased demands on the spectral imaging requirements of filters to precisely isolate radiation between discrete wavebands and improve photometric accuracy. The spectral design and construction of multilayer filters to accommodate these developments has subsequently been an area of challenging thin-film research, to achieve high spectral positioning accuracy, environmental durability and aging stability at cryogenic temperatures, whilst maximizing the far-infrared performance. In this paper we examine the design and fabrication of interference filters in instruments that utilize the mid-infrared N-band (6-15 µm) and Q-band (16-28 µm) atmospheric windows, together with a rationale for the selection of materials, deposition process, spectral measurements and assessment of environmental durability performance.
Resumo:
The role of anterior cingulate cortex (ACC) in attention is a matter of debate. One hypothesis suggests that its role is to monitor response-level conflict, but explicit evidence is somewhat lacking. In this study, the activation of ACC was compared in (a) color and number standard Stroop tasks in which response preparation and interference shared modality (response-level conflict) and (b) color and number matching Stroop tasks in which response preparation and interference did not share modality (non-response-level conflict). In the congruent conditions, there was no effect of task type. In the interference conditions, anterior cingulate activity in the matching tasks was less than that in the standard tasks. These results support the hypothesis that ACC specifically mediates generalized modality-independent selection processes invoked by response competition.
Resumo:
OBJECTIVE: The anticipation of adverse outcomes, or worry, is a cardinal symptom of generalized anxiety disorder. Prior work with healthy subjects has shown that anticipating aversive events recruits a network of brain regions, including the amygdala and anterior cingulate cortex. This study tested whether patients with generalized anxiety disorder have alterations in anticipatory amygdala function and whether anticipatory activity in the anterior cingulate cortex predicts treatment response. METHOD: Functional magnetic resonance imaging (fMRI) was employed with 14 generalized anxiety disorder patients and 12 healthy comparison subjects matched for age, sex, and education. The event-related fMRI paradigm was composed of one warning cue that preceded aversive pictures and a second cue that preceded neutral pictures. Following the fMRI session, patients received 8 weeks of treatment with extended-release venlafaxine. RESULTS: Patients with generalized anxiety disorder showed greater anticipatory activity than healthy comparison subjects in the bilateral dorsal amygdala preceding both aversive and neutral pictures. Building on prior reports of pretreatment anterior cingulate cortex activity predicting treatment response, anticipatory activity in that area was associated with clinical outcome 8 weeks later following treatment with venlafaxine. Higher levels of pretreatment anterior cingulate cortex activity in anticipation of both aversive and neutral pictures were associated with greater reductions in anxiety and worry symptoms. CONCLUSIONS: These findings of heightened and indiscriminate amygdala responses to anticipatory signals in generalized anxiety disorder and of anterior cingulate cortex associations with treatment response provide neurobiological support for the role of anticipatory processes in the pathophysiology of generalized anxiety disorder.
Resumo:
Cooled infrared filters have been used in pressure modulation and filter radiometry to measure the dynamics, temperature distribution and concentrations of atmospheric elements in various satellite radiometers. Invariably such instruments use precision infrared bandpass filters and coatings for spectral selction, often operating at cryogenic temperatures. More recent developments in the use of spectrally-selective cooled detectors in focal plane arrays have simplified the optical layout and reduced the component count of radiometers but have placed additional demands on both the spectral and physical performance requirements of the filters. This paper describes and contrasts the more traditional radiometers using discrete detectors with those which use focal plane detector array technology, with particular emphasis on the function of the filters and coatings in the two cases. Additionally we discuss the spectral techniques and materials used to fabricate infrared coatings and filters for use in space optics, and give examples of their application in the fabrication of some demanding long wavelength dichroics and filters. We also discuss the effects of the space environment on the stability and durability of high performance infrared filters and materials exposed to low Earth orbit for 69 months on the NASA Long Duration Exposure Facility (LDEF).
Resumo:
Aims: Quinolone antibiotics are the agents of choice for treating systemic Salmonella infections. Resistance to quinolones is usually mediated by mutations in the DNA gyrase gene gyrA. Here we report the evaluation of standard HPLC equipment for the detection of mutations (single nucleotide polymorphisms; SNPs) in gyrA, gyrB, parC and parE by denaturing high performance liquid chromatography (DHPLC). Methods: A panel of Salmonella strains was assembled which comprised those with known different mutations in gyrA (n = 8) and fluoroquinolone-susceptible and -resistant strains (n = 50) that had not been tested for mutations in gyrA. Additionally, antibiotic-susceptible strains of serotypes other than Salmonella enterica serovar Typhimurium strains were examined for serotype-specific mutations in gyrB (n = 4), parC (n = 6) and parE (n = 1). Wild-type (WT) control DNA was prepared from Salmonella Typhimurium NCTC 74. The DNA of respective strains was amplified by PCR using Optimase (R) proofreading DNA polymerase. Duplex DNA samples were analysed using an Agilent A1100 HPLC system with a Varian Helix (TM) DNA column. Sequencing was used to validate mutations detected by DHPLC in the strains with unknown mutations. Results: Using this HPLC system, mutations in gyrA, gyrB, parC and parE were readily detected by comparison with control chromatograms. Sequencing confirmed the gyrA predicted mutations as detected by DHPLC in the unknown strains and also confirmed serotype-associated sequence changes in non-Typhimurium serotypes. Conclusions: The results demonstrated that a non-specialist standard HPLC machine fitted with a generally available column can be used to detect SNPs in gyrA, gyrB, parC and parE genes by DHPLC. Wider applications should be possible.
Resumo:
Experientially opening oneself to pain rather than avoiding it is said to reduce the mind's tendency toward avoidance or anxiety which can further exacerbate the experience of pain. This is a central feature of mindfulness-based therapies. Little is known about the neural mechanisms of mindfulness on pain. During a meditation practice similar to mindfulness, functional magnetic resonance imaging was used in expert meditators (> 10,000 h of practice) to dissociate neural activation patterns associated with pain, its anticipation, and habituation. Compared to novices, expert meditators reported equal pain intensity, but less unpleasantness. This difference was associated with enhanced activity in the dorsal anterior insula (aI), and the anterior mid-cingulate (aMCC) the so-called ‘salience network’, for experts during pain. This enhanced activity during pain was associated with reduced baseline activity before pain in these regions and the amygdala for experts only. The reduced baseline activation in left aI correlated with lifetime meditation experience. This pattern of low baseline activity coupled with high response in aIns and aMCC was associated with enhanced neural habituation in amygdala and pain-related regions before painful stimulation and in the pain-related regions during painful stimulation. These findings suggest that cultivating experiential openness down-regulates anticipatory representation of aversive events, and increases the recruitment of attentional resources during pain, which is associated with faster neural habituation.
Resumo:
Wernicke’s aphasia occurs following a stroke to classical language comprehension regions in the left temporoparietal cortex. Consequently, auditory-verbal comprehension is significantly impaired in Wernicke’s aphasia but the capacity to comprehend visually presented materials (written words and pictures) is partially spared. This study used fMRI to investigate the neural basis of written word and picture semantic processing in Wernicke’s aphasia, with the wider aim of examining how the semantic system is altered following damage to the classical comprehension regions. Twelve participants with Wernicke’s aphasia and twelve control participants performed semantic animate-inanimate judgements and a visual height judgement baseline task. Whole brain and ROI analysis in Wernicke’s aphasia and control participants found that semantic judgements were underpinned by activation in the ventral and anterior temporal lobes bilaterally. The Wernicke’s aphasia group displayed an “over-activation” in comparison to control participants, indicating that anterior temporal lobe regions become increasingly influential following reduction in posterior semantic resources. Semantic processing of written words in Wernicke’s aphasia was additionally supported by recruitment of the right anterior superior temporal lobe, a region previously associated with recovery from auditory-verbal comprehension impairments. Overall, the results concord with models which indicate that the anterior temporal lobes are crucial for multimodal semantic processing and that these regions may be accessed without support from classic posterior comprehension regions.
Resumo:
During the interval between 8:00-9:30 on 14 January 2001, the four Cluster spacecraft were moving from the central magnetospheric lobe, through the dusk sector mantle, on their way towards intersecting the magnetopause near 15:00 MLT and 15:00 UT. Throughout this interval, the EIS-CAT Svalbard Radar (ESR) at Longyearbyen observed a series of poleward-moving transient events of enhanced F-region plasma concentration ("polar cap patches"), with a repetition period of the order of 10 min. Allowing for the estimated solar wind propagation delay of 75 ( 5) min, the interplanetary magnetic field (IMF) had a southward component during most of the interval. The magnetic footprint of the Cluster spacecraft, mapped to the ionosphere using the Tsyganenko T96 model (with input conditions prevailing during this event), was to the east of the ESR beams. Around 09:05 UT, the DMSP-F12 satellite flew over the ESR and showed a sawtooth cusp ion dispersion signature that also extended into the electrons on the equatorward edge of the cusp, revealing a pulsed magnetopause reconnection. The consequent enhanced ionospheric flow events were imaged by the SuperDARN HF backscatter radars. The average convection patterns (derived using the AMIE technique on data from the magnetometers, the EISCAT and SuperDARN radars, and the DMSP satellites) show that the associated poleward-moving events also convected over the predicted footprint of the Cluster spacecraft. Cluster observed enhancements in the fluxes of both electrons and ions. These events were found to be essentially identical at all four spacecraft, indicating that they had a much larger spatial scale than the satellite separation of the order of 600 km. Some of the events show a correspondence between the lowest energy magnetosheath electrons detected by the PEACE instrument on Cluster (10-20 eV) and the topside ionospheric enhancements seen by the ESR (at 400-700 km). We suggest that a potential barrier at the magnetopause, which prevents the lowest energy electrons from entering the magnetosphere, is reduced when and where the boundary-normal magnetic field is enhanced and that the observed polar cap patches are produced by the consequent enhanced precipitation of the lowest energy electrons, making them and the low energy electron precipitation fossil remnants of the magnetopause reconnection rate pulses.
Resumo:
Functional neuroimaging investigations of pain have discovered a reliable pattern of activation within limbic regions of a putative "pain matrix" that has been theorized to reflect the affective dimension of pain. To test this theory, we evaluated the experience of pain in a rare neurological patient with extensive bilateral lesions encompassing core limbic structures of the pain matrix, including the insula, anterior cingulate, and amygdala. Despite widespread damage to these regions, the patient's expression and experience of pain was intact, and at times excessive in nature. This finding was consistent across multiple pain measures including self-report, facial expression, vocalization, withdrawal reaction, and autonomic response. These results challenge the notion of a "pain matrix" and provide direct evidence that the insula, anterior cingulate, and amygdala are not necessary for feeling the suffering inherent to pain. The patient's heightened degree of pain affect further suggests that these regions may be more important for the regulation of pain rather than providing the decisive substrate for pain's conscious experience.