57 resultados para Endangered ecosystems
em CentAUR: Central Archive University of Reading - UK
Resumo:
This contribution closes this special issue of Hydrology and Earth System Sciences concerning the assessment of nitrogen dynamics in catchments across Europe within a semi-distributed Integrated Nitrogen model for multiple source assessment in Catchments (INCA). New developments in the understanding of the factors and processes determining the concentrations and loads of nitrogen are outlined. The ability of the INCA model to simulate the hydrological and nitrogen dynamics of different European ecosystems is assessed and the results of the first scenario analyses investigating the impacts of deposition, climatic and land-use change on the nitrogen dynamics are summarised. Consideration is given as to how well the model has performed as a generic too] for describing the nitrogen dynamics of European ecosystems across Arctic, Maritime. Continental and Mediterranean climates, its role in new research initiatives and future research requirements.
Resumo:
1. Jerdon's courser Rhinoptilus bitorquatus is a nocturnally active cursorial bird that is only known to occur in a small area of scrub jungle in Andhra Pradesh, India, and is listed as critically endangered by the IUCN. Information on its habitat requirements is needed urgently to underpin conservation measures. We quantified the habitat features that correlated with the use of different areas of scrub jungle by Jerdon's coursers, and developed a model to map potentially suitable habitat over large areas from satellite imagery and facilitate the design of surveys of Jerdon's courser distribution. 2. We used 11 arrays of 5-m long tracking strips consisting of smoothed fine soil to detect the footprints of Jerdon's coursers, and measured tracking rates (tracking events per strip night). We counted the number of bushes and trees, and described other attributes of vegetation and substrate in a 10-m square plot centred on each strip. We obtained reflectance data from Landsat 7 satellite imagery for the pixel within which each strip lay. 3. We used logistic regression models to describe the relationship between tracking rate by Jerdon's coursers and characteristics of the habitat around the strips, using ground-based survey data and satellite imagery. 4. Jerdon's coursers were most likely to occur where the density of large (>2 m tall) bushes was in the range 300-700 ha(-1) and where the density of smaller bushes was less than 1000 ha(-1). This habitat was detectable using satellite imagery. 5. Synthesis and applications. The occurrence of Jerdon's courser is strongly correlated with the density of bushes and trees, and is in turn affected by grazing with domestic livestock, woodcutting and mechanical clearance of bushes to create pasture, orchards and farmland. It is likely that there is an optimal level of grazing and woodcutting that would maintain or create suitable conditions for the species. Knowledge of the species' distribution is incomplete and there is considerable pressure from human use of apparently suitable habitats. Hence, distribution mapping is a high conservation priority. A two-step procedure is proposed, involving the use of ground surveys of bush density to calibrate satellite image-based mapping of potential habitat. These maps could then be used to select priority areas for Jerdon's courser surveys. The use of tracking strips to study habitat selection and distribution has potential in studies of other scarce and secretive species.
Predictive vegetation mapping in the Mediterranean context: Considerations and methodological issues
Resumo:
The need to map vegetation communities over large areas for nature conservation and to predict the impact of environmental change on vegetation distributions, has stimulated the development of techniques for predictive vegetation mapping. Predictive vegetation studies start with the development of a model relating vegetation units and mapped physical data, followed by the application of that model to a geographic database and over a wide range of spatial scales. This field is particularly important for identifying sites for rare and endangered species and locations of high biodiversity such as many areas of the Mediterranean Basin. The potential of the approach is illustrated with a mapping exercise in the alti-meditterranean zone of Lefka Ori in Crete. The study established the nature of the relationship between vegetation communities and physical data including altitude, slope and geomorphology. In this way the knowledge of community distribution was improved enabling a GIS-based model capable of predicting community distribution to be constructed. The paper describes the development of the spatial model and the methodological problems of predictive mapping for monitoring Mediterranean ecosystems. The paper concludes with a discussion of the role of predictive vegetation mapping and other spatial techniques, such as fuzzy mapping and geostatistics, for improving our understanding of the dynamics of Mediterranean ecosystems and for practical management in a region that is under increasing pressure from human impact.
Resumo:
Mediterranean ecosystems rival tropical ecosystems in terms of plant biodiversity. The Mediterranean Basin (MB) itself hosts 25 000 plant species, half of which are endemic. This rich biodiversity and the complex biogeographical and political issues make conservation a difficult task in the region. Species, habitat, ecosystem and landscape approaches have been used to identify conservation targets at various scales: ie, European, national, regional and local. Conservation decisions require adequate information at the species, community and habitat level. Nevertheless and despite recent improvements/efforts, this information is still incomplete, fragmented and varies from one country to another. This paper reviews the biogeographic data, the problems arising from current conservation efforts and methods for the conservation assessment and prioritization using GIS. GIS has an important role to play for managing spatial and attribute information on the ecosystems of the MB and to facilitate interactions with existing databases. Where limited information is available it can be used for prediction when directly or indirectly linked to externally built models. As well as being a predictive tool today GIS incorporate spatial techniques which can improve the level of information such as fuzzy logic, geostatistics, or provide insight about landscape changes such as 3D visualization. Where there are limited resources it can assist with identifying sites of conservation priority or the resolution of environmental conflicts (scenario building). Although not a panacea, GIS is an invaluable tool for improving the understanding of Mediterranean ecosystems and their dynamics and for practical management in a region that is under increasing pressure from human impact.
Resumo:
This contribution closes this special issue of Hydrology and Earth System Sciences concerning the assessment of nitrogen dynamics in catchments across Europe within a semi-distributed Integrated Nitrogen model for multiple source assessment in Catchments (INCA). New developments in the understanding of the factors and processes determining the concentrations and loads of nitrogen are outlined. The ability of the INCA model to simulate the hydrological and nitrogen dynamics of different European ecosystems is assessed and the results of the first scenario analyses investigating the impacts of deposition, climatic and land-use change on the nitrogen dynamics are summarised. Consideration is given as to how well the model has performed as a generic too] for describing the nitrogen dynamics of European ecosystems across Arctic, Maritime. Continental and Mediterranean climates, its role in new research initiatives and future research requirements.
Resumo:
Evolutionary theory predicts that individuals, in order to increase their relative fitness, can evolve behaviours that are detrimental for the group or population. This mismatch is particularly visible in social organisms. Despite its potential to affect the population dynamics of social animals, this principle has not yet been applied to real-life conservation. Social group structure has been argued to stabilize population dynamics due to the buffering effects of nonreproducing subordinates. However, competition for breeding positions in such species can also interfere with the reproduction of breeding pairs. Seychelles magpie robins, Copsychus sechellarum, live in social groups where subordinate individuals do not breed. Analysis of long-term individual-based data and short-term behavioural observations show that subordinates increase the territorial takeover frequency of established breeders. Such takeovers delay offspring production and decrease territory productivity. Individual-based simulations of the Seychelles magpie robin population parameterized with the long-term data show that this process has significantly postponed the recovery of the species from the Critically Endangered status. Social conflict thus can extend the period of high extinction risk, which we show to have population consequences that should be taken into account in management programmes. This is the first quantitative assessment of the effects of social conflict on conservation.
Resumo:
1. Life-history theory assumes that trade-offs exist between an individual's life-history components, such that an increased allocation of a resource to one fitness trait might be expected to result in a cost for a conflicting fitness trait. Recent evidence from experimental manipulations of wild individuals supports this assumption. 2. The management of many bird populations involves harvesting for both commercial and conservation purposes. One frequently harvested life-history stage is the egg, but the consequences of repeated egg harvesting for the individual and the long-term dynamics of the population remain poorly understood. 3. We used a well-documented restored population of the Mauritius kestrel Falco punctatus as a model system to explore the consequences of egg harvesting (and associated management practices) for an individual within the context of life-history theory. 4. Our analysis indicated that management practices enhanced both the size and number of clutches laid by managed females, and improved mid-life male and female adult survival relative to unmanaged adult kestrels. 5. Although management resulted in an increased effort in egg production, it reduced parental effort during incubation and the rearing of offspring, which could account for these observed changes. 6. Synthesis and applications. This study demonstrates how a commonly applied harvesting strategy, when examined within the context of life-history theory, can identify improvements in particular fitness traits that might alleviate some of the perceived negative impact of harvesting on the long-term dynamics of a managed population.
Resumo:
Jerdon's Courser Rhinoptilus bitorquatus is one of the most endangered and least understood birds in the world. It is endemic to scrub habitats in southeast India which have been lost and degraded because of human land use. We used satellite images from 1991 and 2000 and two methods for classifying land cover to quantify loss of Jerdon's Courser habitat. The scrub habitats on which this species depends decreased in area by 11-15% during this short period (9.6 years), predominantly as a result of scrub clearance and conversion to agriculture. The remaining scrub patches were smaller and further from human settlements in 2000 than in 1991, implying that much of the scrub loss had occurred close to human population centres. We discuss the implications of our results for the conservation of Jerdon's Courser and the use of remote sensing methods in conservation.