230 resultados para Emotion Processing
em CentAUR: Central Archive University of Reading - UK
Resumo:
The current study examined the specificity of patterns of responding to high and low intensity negative emotional expressions of infants of mothers with social phobia, and their association with child outcomes at two years of age. Infants of mothers with social phobia, generalised anxiety disorder (GAD) or no history of anxiety were shown pairs of angry and fearful emotional expressions at 10 weeks of age. Symptoms of social withdrawal, anxiety and sleep problems were assessed at two years of age. Only infants of mothers with social phobia showed a tendency to look away from high intensity fear faces; however infants of mothers with both social phobia and GAD showed a bias towards high intensity angry faces. Among the offspring of mothers with social phobia, anxiety symptoms at two years of age were associated with a preference for high intensity fear faces in infancy. The reverse pattern was found amongst the offspring of non-anxious mothers. These findings suggest a possible specific response to emotional expressions among the children of mothers with social phobia.
Resumo:
Despite the fact that physical health and cognitive abilities decline with aging, the ability to regulate emotion remains stable and in some aspects improves across the adult life span. Older adults also show a positivity effect in their attention and memory, with diminished processing of negative stimuli relative to positive stimuli compared with younger adults. The current paper reviews functional magnetic resonance imaging studies investigating age-related differences in emotional processing and discusses how this evidence relates to two opposing theoretical accounts of older adults’ positivity effect. The aging-brain model [Cacioppo et al. in: Social Neuroscience: Toward Understanding the Underpinnings of the Social Mind. New York, Oxford University Press, 2011] proposes that older adults’ positivity effect is a consequence of age-related decline in the amygdala, whereas the cognitive control hypothesis [Kryla-Lighthall and Mather in: Handbook of Theories of Aging, ed 2. New York, Springer, 2009; Mather and Carstensen: Trends Cogn Sci 2005;9:496–502; Mather and Knight: Psychol Aging 2005;20:554–570] argues that the positivity effect is a result of older adults’ greater focus on regulating emotion. Based on evidence for structural and functional preservation of the amygdala in older adults and findings that older adults show greater prefrontal cortex activity than younger adults while engaging in emotion-processing tasks, we argue that the cognitive control hypothesis is a more likely explanation for older adults’ positivity effect than the aging-brain model.
Resumo:
Using fMRI, we examined the neural correlates of maternal responsiveness. Ten healthy mothers viewed alternating blocks of video: (i) 40 s of their own infant; (ii) 20 s of a neutral video; (iii) 40 s of an unknown infant and (iv) 20 s of neutral video, repeated 4 times. Predominant BOLD signal change to the contrast of infants minus neutral stimulus occurred in bilateral visual processing regions BA minus neutral stimulus occurred in bilateral visual processing regions (BA 38), left amygdala and visual cortex (BA 19), and to the unknown infant minus own infant contrast in bilateral orbitofrontal cortex (BA 10,47) and medial prefrontal cortex (BA 8). These findings suggest that amygdala and temporal pole may be key sites in mediating a mother's response to her infant and reaffirms their importance in face emotion processing and social behaviour.
Resumo:
Emotion processing deficits can cause catastrophic damage to a person's ability to interact socially. While it is known that older adults have difficulty identifying facial emotions, it is still not clear whether this difficulty extends to identification of the emotion conveyed by prosody. This study investigated whether the ability of older adults to decode emotional prosody falls below that of young adults after controlling for loss of hearing sensitivity and key features of cognitive ageing. Apart from frontal lobe load, only verbal IQ was associated with the age-related reduction in performance displayed by older participants, but a notable deficit existed after controlling for its effects. It is concluded that older adults may indeed have difficulty deducing the emotion conveyed by prosody, and that while this difficulty can be exaggerated by some aspects of cognitive ageing, it is primary in origin.
Resumo:
BACKGROUND: Humans from an early age look longer at preferred stimuli, and also typically look longer at facial expressions of emotion, particularly happy faces. Atypical gaze patterns towards social stimuli are common in Autism Spectrum Conditions (ASC). However, it is unknown if gaze fixation patterns have any genetic basis. In this study, we tested if variations in the cannabinoid receptor 1 (CNR1) gene are associated with gaze duration towards happy faces. This gene was selected because CNR1 is a key component of the endocannabinoid system, involved in processing reward, and in our previous fMRI study we found variations in CNR1 modulates the striatal response to happy (but not disgust) faces. The striatum is involved in guiding gaze to rewarding aspects of a visual scene. We aimed to validate and extend this result in another sample using a different technique (gaze tracking). METHODS: 30 volunteers (13 males, 17 females) from the general population observed dynamic emotion expressions on a screen while their eye movements were recorded. They were genotyped for the identical four SNPs in the CNR1 gene tested in our earlier fMRI study. RESULTS: Two SNPs (rs806377 and rs806380) were associated with differential gaze duration for happy (but not disgust) faces. Importantly, the allelic groups associated with greater striatal response to happy faces in the fMRI study were associated with longer gaze duration for happy faces. CONCLUSIONS: These results suggest CNR1 variations modulate striatal function that underlies the perception of signals of social reward such as happy faces. This suggests CNR1 is a key element in the molecular architecture of perception of certain basic emotions. This may have implications for understanding neurodevelopmental conditions marked by atypical eye contact and facial emotion processing, such as ASC.
Resumo:
BACKGROUND: Sex differences are present in many neuropsychiatric conditions that affect emotion and approach-avoidance behavior. One potential mechanism underlying such observations is testosterone in early development. Although much is known about the effects of testosterone in adolescence and adulthood, little is known in humans about how testosterone in fetal development influences later neural sensitivity to valenced facial cues and approach-avoidance behavioral tendencies. METHODS: With functional magnetic resonance imaging we scanned 25 8-11-year-old children while viewing happy, fear, neutral, or scrambled faces. Fetal testosterone (FT) was measured via amniotic fluid sampled between 13 and 20 weeks gestation. Behavioral approach-avoidance tendencies were measured via parental report on the Sensitivity to Punishment and Sensitivity to Rewards questionnaire. RESULTS: Increasing FT predicted enhanced selectivity for positive compared with negatively valenced facial cues in reward-related regions such as caudate, putamen, and nucleus accumbens but not the amygdala. Statistical mediation analyses showed that increasing FT predicts increased behavioral approach tendencies by biasing caudate, putamen, and nucleus accumbens but not amygdala to be more responsive to positive compared with negatively valenced cues. In contrast, FT was not predictive of behavioral avoidance tendencies, either through direct or neurally mediated paths. CONCLUSIONS: This work suggests that testosterone in humans acts as a fetal programming mechanism on the reward system and influences behavioral approach tendencies later in life. As a mechanism influencing atypical development, FT might be important across a range of neuropsychiatric conditions that asymmetrically affect the sexes, the reward system, emotion processing, and approach behavior.
Resumo:
A wealth of literature suggests that emotional faces are given special status as visual objects: Cognitive models suggest that emotional stimuli, particularly threat-relevant facial expressions such as fear and anger, are prioritized in visual processing and may be identified by a subcortical “quick and dirty” pathway in the absence of awareness (Tamietto & de Gelder, 2010). Both neuroimaging studies (Williams, Morris, McGlone, Abbott, & Mattingley, 2004) and backward masking studies (Whalen, Rauch, Etcoff, McInerney, & Lee, 1998) have supported the notion of emotion processing without awareness. Recently, our own group (Adams, Gray, Garner, & Graf, 2010) showed adaptation to emotional faces that were rendered invisible using a variant of binocular rivalry: continual flash suppression (CFS, Tsuchiya & Koch, 2005). Here we (i) respond to Yang, Hong, and Blake's (2010) criticisms of our adaptation paper and (ii) provide a unified account of adaptation to facial expression, identity, and gender, under conditions of unawareness
Resumo:
The present study investigated the premise that individual differences in autonomic physiology could be used to specify the nature and consequences of information processing taking place in medial prefrontal regions during cognitive reappraisal of unpleasant pictures. Neural (blood oxygenation level-dependent functional magnetic resonance imaging) and autonomic (electrodermal [EDA], pupil diameter, cardiac acceleration) signals were recorded simultaneously as twenty-six older people (ages 64–66 years) used reappraisal to increase, maintain, or decrease their responses to unpleasant pictures. EDA was higher when increasing and lower when decreasing compared to maintaining. This suggested modulation of emotional arousal by reappraisal. By contrast, pupil diameter and cardiac acceleration were higher when increasing and decreasing compared to maintaining. This suggested modulation of cognitive demand. Importantly, reappraisal-related activation (increase, decrease > maintain) in two medial prefrontal regions (dorsal medial frontal gyrus and dorsal cingulate gyrus) was correlated with greater cardiac acceleration (increase, decrease > maintain) and monotonic changes in EDA (increase > maintain > decrease). These data indicate that these two medial prefrontal regions are involved in the allocation of cognitive resources to regulate unpleasant emotion, and that they modulate emotional arousal in accordance with the regulatory goal. The emotional arousal effects were mediated by the right amygdala. Reappraisal-related activation in a third medial prefrontal region (subgenual anterior cingulate cortex) was not associated with similar patterns of change in any of the autonomic measures, thus highlighting regional specificity in the degree to which cognitive demand is reflected in medial prefrontal activation during reappraisal.
Resumo:
Recent brain imaging studies using functional magnetic resonance imaging (fMRI) have implicated insula and anterior cingulate cortices in the empathic response to another's pain. However, virtually nothing is known about the impact of the voluntary generation of compassion on this network. To investigate these questions we assessed brain activity using fMRI while novice and expert meditation practitioners generated a loving-kindness-compassion meditation state. To probe affective reactivity, we presented emotional and neutral sounds during the meditation and comparison periods. Our main hypothesis was that the concern for others cultivated during this form of meditation enhances affective processing, in particular in response to sounds of distress, and that this response to emotional sounds is modulated by the degree of meditation training. The presentation of the emotional sounds was associated with increased pupil diameter and activation of limbic regions (insula and cingulate cortices) during meditation (versus rest). During meditation, activation in insula was greater during presentation of negative sounds than positive or neutral sounds in expert than it was in novice meditators. The strength of activation in insula was also associated with self-reported intensity of the meditation for both groups. These results support the role of the limbic circuitry in emotion sharing. The comparison between meditation vs. rest states between experts and novices also showed increased activation in amygdala, right temporo-parietal junction (TPJ), and right posterior superior temporal sulcus (pSTS) in response to all sounds, suggesting, greater detection of the emotional sounds, and enhanced mentation in response to emotional human vocalizations for experts than novices during meditation. Together these data indicate that the mental expertise to cultivate positive emotion alters the activation of circuitries previously linked to empathy and theory of mind in response to emotional stimuli.
Resumo:
Individuals with social phobia display social information processing biases yet their aetiological significance is unclear. Infants of mothers with social phobia and control infants' responses were assessed at 10 days, 10 and 16 weeks, and 10 months to faces versus non-faces, variations in intensity of emotional expressions, and gaze direction. Infant temperament and maternal behaviours were also assessed. Both groups showed a preference for faces over non-faces at 10 days and 10 weeks, and full faces over profiles at 16 weeks; they also looked more to high vs. low intensity angry faces at 10 weeks, and fearful faces at 10 months; however, index infants' initial orientation and overall looking to high-intensity fear faces was relatively less than controls at 10 weeks. This was not explained by infant temperament or maternal behaviours. The findings suggest that offspring of mothers with social phobia show processing biases to emotional expressions in infancy.
Resumo:
This commentary raises general questions about the parsimony and generalizability of the SIMS model, before interrogating the specific roles that the amygdala and eye contact play in it. Additionally, this situates the SIMS model alongside another model of facial expression processing, with a view to incorporating individual differences in emotion perception.
Resumo:
Background: Intrusions are common symptoms of both posttraumatic stress disorder (PTSD) and schizophrenia. Steel et al (2005) suggest that an information processing style characterized by weak trait contextual integration renders psychotic individuals vulnerable to intrusive experiences. This ‘contextual integration hypothesis’ was tested in individuals reporting anomalous experiences in the absence of a need-for-care. Methods: Twenty-six low schizotypes and twenty-three individuals reporting anomalous experiences were shown a traumatic film with and without a concurrent visuo-spatial task. Participants rated post-traumatic intrusions for frequency and form, and completed self-report measures of information processing style. It was predicted that, due to their weaker trait contextual integration, the anomalous experiences group would (1) exhibit more intrusions following exposure to the trauma-film; (2) display intrusions characterised by more PTSD qualities and (3) show a greater reduction of intrusions with the concurrent visuo-spatial task. Results: As predicted, the anomalous experiences group reported a lower level of trait contextual integration and more intrusions than the low schizotypes, both immediately after watching the film, and during the following seven days. Their post-traumatic intrusive memories were more PTSD-like (more intrusive, vivid and associated with emotion). The visuo-spatial task had no effect on number of intrusions in either group. Conclusions: These findings provide some support for the proposal that weak trait contextual integration underlies the development of intrusions within both PTSD and psychosis.
Resumo:
Undeniably, anticipation plays a crucial role in cognition. By what means, to what extent, and what it achieves remain open questions. In a recent BBS target article, Clark (in press) depicts an integrative model of the brain that builds on hierarchical Bayesian models of neural processing (Rao and Ballard, 1999; Friston, 2005; Brown et al., 2011), and their most recent formulation using the free-energy principle borrowed from thermodynamics (Feldman and Friston, 2010; Friston, 2010; Friston et al., 2010). Hierarchical generative models of cognition, such as those described by Clark, presuppose the manipulation of representations and internal models of the world, in as much detail as is perceptually available. Perhaps surprisingly, Clark acknowledges the existence of a “virtual version of the sensory data” (p. 4), but with no reference to some of the historical debates that shaped cognitive science, related to the storage, manipulation, and retrieval of representations in a cognitive system (Shanahan, 1997), or accounting for the emergence of intentionality within such a system (Searle, 1980; Preston and Bishop, 2002). Instead of demonstrating how this Bayesian framework responds to these foundational questions, Clark describes the structure and the functional properties of an action-oriented, multi-level system that is meant to combine perception, learning, and experience (Niedenthal, 2007).
Resumo:
To investigate the mechanisms involved in automatic processing of facial expressions, we used the QUEST procedure to measure the display durations needed to make a gender decision on emotional faces portraying fearful, happy, or neutral facial expressions. In line with predictions of appraisal theories of emotion, our results showed greater processing priority of emotional stimuli regardless of their valence. Whereas all experimental conditions led to an averaged threshold of about 50 ms, fearful and happy facial expressions led to significantly less variability in the responses than neutral faces. Results suggest that attention may have been automatically drawn by the emotion portrayed by face targets, yielding more informative perceptions and less variable responses. The temporal resolution of the perceptual system (expressed by the thresholds) and the processing priority of the stimuli (expressed by the variability in the responses) may influence subjective and objective measures of awareness, respectively.