2 resultados para Embryo growth
em CentAUR: Central Archive University of Reading - UK
Resumo:
The apomictic system in Malus wits Used Is a model to examine rejuvenation by generating genetically identical tissue culture lines that had two entirely different developmental origins: either embryo-derived tissues (juvenile clones) or somatic tissue from the adult/mature tree (mature clones). These two lines were then subsequently used to examine in vitro difference between mature (M) and juvenile (J) tissues in potential for shoot, root proliferation and ex vitro (glasshouse) growth. The M clones of M. hupehensis and M. toringoides in vitro had significantly fewer total shoots and shoot more than 2 cm in length per proliferating explant than the J clones and also rooted less efficiently. Ex vitro (glasshouse) juvenile clones had shorter internodes, a greater number of leaves and more dry weight compared to their mature counterparts.
Resumo:
Early establishment of endophytes can play a role in pathogen suppression and improve seedling development. One route for establishment of endophytes in seedlings is transmission of bacteria from the parent plant to the seedling via the seed. In wheat seeds, it is not clear whether this transmission route exists, and the identities and location of bacteria within wheat seeds are unknown. We identified bacteria in the wheat (Triticum aestivum) cv. Hereward seed environment using embryo excision to determine the location of the bacterial load. Axenic wheat seedlings obtained with this method were subsequently used to screen a putative endophyte bacterial isolate library for endophytic competency. This absence of bacteria recovered from seeds indicated low bacterial abundance and/or the presence of inhibitors. Diversity of readily culturable bacteria in seeds was low with 8 genera identified, dominated by Erwinia and Paenibacillus. We propose that anatomical restrictions in wheat limit embryo associated vertical transmission, and that bacterial load is carried in the seed coat, crease tissue and endosperm. This finding facilitates the creation of axenic wheat plants to test competency of putative endophytes and also provides a platform for endophyte competition, plant growth, and gene expression studies without an indigenous bacterial background.