23 resultados para Embedding mappin
em CentAUR: Central Archive University of Reading - UK
Resumo:
Can human social cognitive processes and social motives be grasped by the methods of experimental economics? Experimental studies of strategic cognition and social preferences contribute to our understanding of the social aspects of economic decisions making. Yet, papers in this issue argue that the social aspects of decision-making introduce several difficulties for interpreting the results of economic experiments. In particular, the laboratory is itself a social context, and in many respects a rather distinctive one, which raises questions of external validity.
Resumo:
We describe a one-port de-embedding technique suitable for the quasi-optical characterization of terahertz integrated components at frequencies beyond the operational range of most vector network analyzers. This technique is also suitable when the manufacturing of precision terminations to sufficiently fine tolerances for the application of a TRL de-embedding technique is not possible. The technique is based on vector reflection measurements of a series of easily realizable test pieces. A theoretical analysis is presented for the precision of the technique when implemented using a quasi-optical null-balanced bridge reflectometer. The analysis takes into account quantization effects in the linear and angular encoders associated with the balancing procedure, as well as source power and detector noise equivalent power. The precision in measuring waveguide characteristic impedance and attenuation using this de-embedding technique is further analyzed after taking into account changes in the power coupled due to axial, rotational, and lateral alignment errors between the device under test and the instruments' test port. The analysis is based on the propagation of errors after assuming imperfect coupling of two fundamental Gaussian beams. The required precision in repositioning the samples at the instruments' test-port is discussed. Quasi-optical measurements using the de-embedding process for a WR-8 adjustable precision short at 125 GHz are presented. The de-embedding methodology may be extended to allow the determination of S-parameters of arbitrary two-port junctions. The measurement technique proposed should prove most useful above 325 GHz where there is a lack of measurement standards.
Resumo:
The recent change in funding structure in the UK higher education system has fuelled an animated debate about the role that arts and humanities (A&H) subjects play not only within higher education but more broadly in the society and the economy. The debate has engaged with a variety of arguments and perspectives, from the intrinsic value of A&H, to their contribution to the broader society and their economic impact, particularly in relation to the creative economy, through knowledge exchange activities. The paper argues that in the current debate very little attention has been placed on the role that A&H graduates play in the economy, through their work after graduation, and specifically in the creative economy. Using Higher Education Statistical Agency data, we analyse the performance of A&H graduates (compared with other graduates) and particularly explore how embedded they are with the creative economy and its associated industries. The results highlight a complex intersection of different subdisciplines of the A&H with the creative economy but also reveal the salary gap and unstable working conditions experienced by graduates in this field.
Resumo:
Seasonal climate prediction offers the potential to anticipate variations in crop production early enough to adjust critical decisions. Until recently, interest in exploiting seasonal forecasts from dynamic climate models (e.g. general circulation models, GCMs) for applications that involve crop simulation models has been hampered by the difference in spatial and temporal scale of GCMs and crop models, and by the dynamic, nonlinear relationship between meteorological variables and crop response. Although GCMs simulate the atmosphere on a sub-daily time step, their coarse spatial resolution and resulting distortion of day-to-day variability limits the use of their daily output. Crop models have used daily GCM output with some success by either calibrating simulated yields or correcting the daily rainfall output of the GCM to approximate the statistical properties of historic observations. Stochastic weather generators are used to disaggregate seasonal forecasts either by adjusting input parameters in a manner that captures the predictable components of climate, or by constraining synthetic weather sequences to match predicted values. Predicting crop yields, simulated with historic weather data, as a statistical function of seasonal climatic predictors, eliminates the need for daily weather data conditioned on the forecast, but must often address poor statistical properties of the crop-climate relationship. Most of the work on using crop simulation with seasonal climate forecasts has employed historic analogs based on categorical ENSO indices. Other methods based on classification of predictors or weather types can provide daily weather inputs to crop models conditioned on forecasts. Advances in climate-based crop forecasting in the coming decade are likely to include more robust evaluation of the methods reviewed here, dynamically embedding crop models within climate models to account for crop influence on regional climate, enhanced use of remote sensing, and research in the emerging area of 'weather within climate'.
Resumo:
Seasonal climate prediction offers the potential to anticipate variations in crop production early enough to adjust critical decisions. Until recently, interest in exploiting seasonal forecasts from dynamic climate models (e.g. general circulation models, GCMs) for applications that involve crop simulation models has been hampered by the difference in spatial and temporal scale of GCMs and crop models, and by the dynamic, nonlinear relationship between meteorological variables and crop response. Although GCMs simulate the atmosphere on a sub-daily time step, their coarse spatial resolution and resulting distortion of day-to-day variability limits the use of their daily output. Crop models have used daily GCM output with some success by either calibrating simulated yields or correcting the daily rainfall output of the GCM to approximate the statistical properties of historic observations. Stochastic weather generators are used to disaggregate seasonal forecasts either by adjusting input parameters in a manner that captures the predictable components of climate, or by constraining synthetic weather sequences to match predicted values. Predicting crop yields, simulated with historic weather data, as a statistical function of seasonal climatic predictors, eliminates the need for daily weather data conditioned on the forecast, but must often address poor statistical properties of the crop-climate relationship. Most of the work on using crop simulation with seasonal climate forecasts has employed historic analogs based on categorical ENSO indices. Other methods based on classification of predictors or weather types can provide daily weather inputs to crop models conditioned on forecasts. Advances in climate-based crop forecasting in the coming decade are likely to include more robust evaluation of the methods reviewed here, dynamically embedding crop models within climate models to account for crop influence on regional climate, enhanced use of remote sensing, and research in the emerging area of 'weather within climate'.
Resumo:
The UK construction industry is in the process of trying to adopt a new culture based on the large-scale take up of innovative practices. Through the Demonstration Project process many organizations are implementing changed practices and learning from the experiences of others. This is probably the largest experiment in innovation in any industry in recent times. The long-term success will be measured by the effectiveness of embedding the new practices in the organization. As yet there is no recognized approach to measuring the receptivity of the organization to the innovation process as an indication of the likelihood of long-term development. The development of an appropriate approach is described here. Existing approaches to the measurement of the take up of innovation were reviewed and where appropriate used as the base for the development of a questionnaire. The questionnaire could be applicable to multi-organizational construction project situations such that the output could determine an individual organization's innovative practices via an innovation scorecard, a project team's approach or it could be used to survey a wide cross-section of the industry.
Resumo:
Perceptual compensation for reverberation was measured by embedding test words in contexts that were either spoken phrases or processed versions of this speech. The processing gave steady-spectrum contexts with no changes in the shape of the short-term spectral envelope over time, but with fluctuations in the temporal envelope. Test words were from a continuum between "sir" and "stir." When the amount of reverberation in test words was increased, to a level above the amount in the context, they sounded more like "sir." However, when the amount of reverberation in the context was also increased, to the level present in the test word, there was perceptual compensation in some conditions so that test words sounded more like "stir" again. Experiments here found compensation with speech contexts and with some steady-spectrum contexts, indicating that fluctuations in the context's temporal envelope can be sufficient for compensation. Other results suggest that the effectiveness of speech contexts is partly due to the narrow-band "frequency-channels" of the auditory periphery, where temporal-envelope fluctuations can be more pronounced than they are in the sound's broadband temporal envelope. Further results indicate that for compensation to influence speech, the context needs to be in a broad range of frequency channels. (c) 2007 Acoustical Society of America.
Resumo:
We present three components of a virtual research environment developed for the ongoing Roman excavation at Silchester. These components — Recycle Bridge, XDB cross-database search, and Arch3D — provide additional services around the existing core of the system, run on the Integrated Archaeological Database (IADB). They provide, respectively, embedding of legacy applications into portals, cross-database searching, and 3D visualisation of stratigraphic information.
Resumo:
Information systems for business are frequently heavily reliant on software. Two important feedback-related effects of embedding software in a business process are identified. First, the system dynamics of the software maintenance process can become complex, particularly in the number and scope of the feedback loops. Secondly, responsiveness to feedback can have a big effect on the evolvability of the information system. Ways have been explored to provide an effective mechanism for improving the quality of feedback between stakeholders during software maintenance. Understanding can be improved by using representations of information systems that are both service-based and architectural in scope. The conflicting forces that encourage change or stability can be resolved using patterns and pattern languages. A morphology of information systems pattern languages has been described to facilitate the identification and reuse of patterns and pattern languages. The kind of planning process needed to achieve consensus on a system's evolution is also considered.
Resumo:
We agree with Duckrow and Albano [Phys. Rev. E 67, 063901 (2003)] and Quian Quiroga et al. [Phys. Rev. E 67, 063902 (2003)] that mutual information (MI) is a useful measure of dependence for electroencephalogram (EEG) data, but we show that the improvement seen in the performance of MI on extracting dependence trends from EEG is more dependent on the type of MI estimator rather than any embedding technique used. In an independent study we conducted in search for an optimal MI estimator, and in particular for EEG applications, we examined the performance of a number of MI estimators on the data set used by Quian Quiroga et al. in their original study, where the performance of different dependence measures on real data was investigated [Phys. Rev. E 65, 041903 (2002)]. We show that for EEG applications the best performance among the investigated estimators is achieved by k-nearest neighbors, which supports the conjecture by Quian Quiroga et al. in Phys. Rev. E 67, 063902 (2003) that the nearest neighbor estimator is the most precise method for estimating MI.
Resumo:
We agree with Duckrow and Albano [Phys. Rev. E 67, 063901 (2003)] and Quian Quiroga [Phys. Rev. E 67, 063902 (2003)] that mutual information (MI) is a useful measure of dependence for electroencephalogram (EEG) data, but we show that the improvement seen in the performance of MI on extracting dependence trends from EEG is more dependent on the type of MI estimator rather than any embedding technique used. In an independent study we conducted in search for an optimal MI estimator, and in particular for EEG applications, we examined the performance of a number of MI estimators on the data set used by Quian Quiroga in their original study, where the performance of different dependence measures on real data was investigated [Phys. Rev. E 65, 041903 (2002)]. We show that for EEG applications the best performance among the investigated estimators is achieved by k-nearest neighbors, which supports the conjecture by Quian Quiroga in Phys. Rev. E 67, 063902 (2003) that the nearest neighbor estimator is the most precise method for estimating MI.