32 resultados para Electronic and structural properties

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The new dioxatetraazamacrocycle (L-1) was synthesized by a 2 + 2 condensation and characterized. Stability constants of its copper(II) complexes were determined by spectrophotometry in DMSO at 298.2 K in 0. 10 mol dm(-3) KClO4. Mainly dinuclear complexes are formed and the presence of mononuclear species is dependent on the counterion (Cl- or ClO4-). The association constants of the dinuclear copper(II) complexes with dicarboxylate anions [oxalate (oxa(2-)), malonate (mal(2-)), succinate (suc(2-)), and glutarate (glu(2-))] were also determined by spectrophotometry at 298.2 K in DMSO, and it was found that values decrease with an increase of the alkyl chain between the carboxylate groups. X-Band EPR spectra of the dicopper(II) complexes and of their cascade species in frozen DMSO exhibit dipole-dipole coupling, and their simulation, together with their UV-vis spectra, showed that the copper centres of the complexes in solution had square pyramidal geometries though with different distortions. From the experimental data, it was also possible to predict the Cu...Cu distances, the minimum being found at 6.4 angstrom for the (Cu2LCl4)-Cl-1 complex and then successively this distance slightly increases when the chloride anions are replaced by dicarboxylate anions, from 6.6 angstrom for oxa(2-) to 7.8 for glu(2-). The crystal structures of the dinuclear copper cascade species with oxa(2-) and suc(2-) were determined and showed one anion bridging both copper centres and Cu...Cu distances of 5.485(7) angstrom and 6.442(8) angstrom, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of isoelectronic replacement of a neutral nitrogen donor atom by an anionic carbon atom in terpyridine ruthenium(II) complexes on the electronic and photophysical properties of the resulting N,C,N'- and C,N,N'-cyclometalated aryl ruthenium(II) complexes were investigated. To this end, a series of complexes was prepared either with ligands containing exclusively nitrogen donor atoms, that is, [Ru(R-1-tpy)(R-2-tpy)](2+) (R-1, R-2 = H, CO2Et), or bearing either one N,C,N'- or C,N,N'-cyclometalated ligand and one tpy ligand, that is, [Ru(R-1-(NCN)-C-Lambda-N-Lambda)(R-2-tpy)](+) and [Ru(R-1-(CNN)-N-Lambda-N-Lambda)(R-2-tpy)](+), respectively. Single-crystal X-ray structure determinations showed that cyclometalation does not significantly alter the overall geometry of the complexes but does change the bond lengths around the ruthenium(II) center, especially the nitrogen-to-ruthenium bond length trans to the carbanion. Substitution of either of the ligands with electron-withdrawing ester functionalities fine-tuned the electronic properties and resulted in the presence of an IR probe. Using trends obtained from redox potentials, emission energies, IR spectroelectrochemical responses, and the character of the lowest unoccupied molecular orbitals from DFT studies, it is shown that the first reduction process and luminescence are associated with the ester-substituted C,N,N'-cyclometalated ligand in [Ru(EtO2C-(CNN)-N-Lambda-N-Lambda)(tpy)](+). Cyclometalation in an N,C,N'-bonding motif changed the energetic order of the ruthenium d(zx), d(yz), and d(xy) orbitals. The red-shifted absorption in the N,C,N'-cyclometalated complexes is assigned to MLCT transitions to the tpy ligand. The red shift observed upon introduction of the ester moiety is associated with an increase in intensity of low-energy transitions, rather than a red shift of the main transition. Cyclometalation in the C,N,N'-binding motif also red-shifts the absorption, but the corresponding transition is associated with both ligand types. Luminescence of the cyclometalated complexes is relatively independent of the mode of cyclometalation, obeying the energy gap law within each individual series.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study compares the impact of thermal and high pressure high temperature(HPHT) processing on volatile profile (via a non-targeted headspace fingerprinting) and structural and nutritional quality parameter (via targeted approaches) of orange and yellow carrot purees. The effect of oil enrichment was also considered. Since oil enrichment affects compounds volatility, the effect of oil was not studied when comparing the volatile fraction. For the targeted part, as yellow carrot purees were shown to contain a very low amount of carotenoids, focus was given to orange carrot purees. The results of the non-targeted approach demonstrated HPHT processing exerts a distinct effect on the volatile fractions compared to thermal processing. In addition, different colored carrot varieties are characterized by distinct headspace fingerprints. From a structural point of view, limited or no difference could be observed between orange carrot purees treated with HPHT or HT processes, both for samples without and with oil. From nutritional point of view, only in samples with oil, significant isomerisation of all-trans-β-carotene occurred due to both processing. Overall, for this type of product and for the selected conditions, HPHT processing seems to have a different impact on the volatile profile but rather similar impact on the structural and nutritional attributes compared to thermal processing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to evaluate the effects of inulin as fat replacer on short dough biscuits and their corresponding doughs. A control formulation, with no replacement, and four formulations in which 10, 20, 30, and 40 % of shortening was replaced by inulin were studied. In the dough, shortening was observed surrounding flour components. At higher fat replacement levels, flour was more available for hydration leading to significant (P<0.05) harder doughs: from 2.76 (0.12)N in 10 % fat-replaced biscuits to 5.81 (1.56)N in 30 % fat-replaced ones. Biscuit structure was more continuous than dough structure. A continuous fat layer coated the matrix surface, where starch granules were embedded. In general, weight loss during baking and water activity decreased significantly (P<0.05) as fat replacement increased. Biscuit dimensions and aeration decreased when fat replacement increased, e.g., width gain was +1.20 mm in 10 fat-replaced biscuits and only +0.32 mm in 40 % fat-replaced ones. Panelist found biscuits with 20 % of fat replacement slightly harder than control biscuits. It can be concluded that shortening may be partially replaced, up to 20 %, with inulin. These low fat biscuits are similar than the control biscuits, and they can have additional health benefits derived from inulin presence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article we present for the first time accurate density functional theory (DFT) and time-dependent (TD) DFT data for a series of electronically unsaturated five-coordinate complexes [Mn(CO)(3)(L-2)](-), where L-2 stands for a chelating strong pi-donor ligand represented by catecholate, dithiolate, amidothiolate, reduced alpha-diimine (1,4-dialkyl-1,4-diazabutadiene (R-DAB), 2,2'-bipyridine) and reduced 2,2'-biphosphinine types. The single-crystal X-ray structure of the unusual compound [Na(BPY)][Mn(CO)(3)(BPY)]center dot Et2O and the electronic absorption spectrum of the anion [Mn(CO)(3)(BPY)](-) are new in the literature. The nature of the bidentate ligand determines the bonding in the complexes, which varies between two limiting forms: from completely pi-delocalized diamagnetic {(CO)(3)Mn-L-2}(-) for L-2 = alpha-diimine or biphosphinine, to largely valence-trapped {(CO)(3)Mn-1-L-2(2-)}(-) for L-2(2-) = catecholate, where the formal oxidation states of Mn and L-2 can be assigned. The variable degree of the pi-delocalization in the Mn(L-2) chelate ring is indicated by experimental resonance Raman spectra of [Mn(CO)(3)(L-2)](-) (L-2=3,5-di-tBu-catecholate and iPr-DAB), where accurate assignments of the diagnostically important Raman bands have been aided by vibrational analysis. The L-2 = catecholate type of complexes is known to react with Lewis bases (CO substitution, formation of six-coordinate adducts) while the strongly pi-delocalized complexes are inert. The five-coordinate complexes adopt usually a distorted square pyramidal geometry in the solid state, even though transitions to a trigonal bipyramid are also not rare. The experimental structural data and the corresponding DFT-computed values of bond lengths and angles are in a very good agreement. TD-DFT calculations of electronic absorption spectra of the studied Mn complexes and the strongly pi-delocalized reference compound [Fe(CO)(3)(Me-DAB)] have reproduced qualitatively well the experimental spectra. Analyses of the computed electronic transitions in the visible spectroscopic region show that the lowest-energy absorption band always contains a dominant (in some cases almost exclusive) contribution from a pi(HOMO) -> pi*(LUMO) transition within the MnL2 metallacycle. The character of this optical excitation depends strongly on the composition of the frontier orbitals, varying from a partial L-2 -> Mn charge transfer (LMCT) through a fully delocalized pi(MnL2) -> pi*(MnL2) situation to a mixed (CO)Mn -> L-2 charge transfer (LLCT/MLCT). The latter character is most apparent in the case of the reference complex [Fe(CO)(3)(Me-DAB)]. The higher-lying, usually strongly mixed electronic transitions in the visible absorption region originate in the three lower-lying occupied orbitals, HOMO - 1 to HOMO - 3, with significant metal-d contributions. Assignment of these optical excitations to electronic transitions of a specific type is difficult. A partial LLCT/MLCT character is encountered most frequently. The electronic absorption spectra become more complex when the chelating ligand L-2, such as 2,2'-bipyridine, features two or more closely spaced low-lying empty pi* orbitals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of Pb2+ doping on the structure and thermoelectric properties of BiOCuSe (also known as BiCuSeO or BiCuOSe) is described. With increasing Pb2+ content, the expansion of the unit cell results in a weakening of the bonding between the [Bi2(1-x) Pb2xO2]2(1-x)+ and the [Cu2Se2]2(1-x)- layers. The electrical resistivity and Seebeck coefficient decrease in a systematic way with growing Pb2+ levels. The thermal conductivity rises due to the increase of the electronic contribution with doping. The power factor of materials with a 4-5% Pb2+ content takes values of ca. 8 W cm-1 K-2 over a wide temperature range. ZT at 673 K is enhanced by ca. 50% when compared to values found for other dopants, such as Sr2+ or Mg2+.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Layered oxychalcogenides have recently emerged as promising thermoelectric materials. The alternation of ionic oxide and covalent chalcogenide layers found in these materials often results in interesting electronic properties, and also facilitates the tuning of their properties via chemical substitution at both types of layers. This review highlights some common structure types found for layered oxychalcogenides and their interrelationships. This review pays special attention to the potential of these materials for thermoelectric applications, and provides an overview of the thermoelectric properties of materials of current interest, including BiCuSeO.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A dinuclear Ni-II complex, [Ni-2(L)(2)(H2O)(NCS)(2)]center dot 3H(2)O (1) in which the metal atoms are bridged by one water molecule and two mu(2)-phenolate ions, and a thiocyanato-bridged dimeric Cull complex, [Cu(L)NCS](2) (2) [L = tridentate Schiff-base ligand, N-(3-aminopropyl)salicylaldimine, derived from 1:1 condensation of salicylaldehyde and 1,3-diaminopropane], have been synthesized and characterized by IR and UV/Vis spectroscopy, cyclic voltammetry and single-crystal X-ray diffraction studies. The structure of 1 consists of dinuclear units with crystallographic C-2 symmetry in which each Ni-II atom is in a distorted octahedral environment. The Ni-O distance and the Ni-O-Ni angle, through the bridged water molecule, are 2.240(11) angstrom and 82.5(5)degrees, respectively. The structure of 2 consists of dinuclear units bridged asymmetrically by di-mu(1,3)-NCS ions; each Cull ion is in a square-pyramidal environment with tau = 0.25. Variable-temperature magnetic susceptibility studies indicate the presence of dominant ferromagnetic exchange coupling in complex 1 with J = 3.1 cm(-1), whereas complex 2 exhibits weak antiferromagnetic coupling between the Cu-II centers with J = -1.7 cm(-1). ((c) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The syntheses of several ethynyl-gold(I) phosphine substituted tolans (1,2-diaryl acetylenes) of general form [Au(C=CC6H4C=CC6H4X)(PPh3)] are described [X = Me (2a), OMe (2b), CO2Me (2c), NO2 (2d), CN (2e)]. These complexes react readily with [Ru-3(CO) 10(mu-dppm)] to give the heterometallic clusters [Ru3(mu-AuPPh3)(mu-eta(1), eta(2)-C2C6H4C, CC6H4X)(CO)(7)(mu-dppm)] (3a-e). The crystallographically determined molecular structures of 2b, 2d, 2e and 3a-e are reported here, that of 2a having been described on a previous occasion. Structural, spectroscopic and electrochemical studies were conducted and have revealed little electronic interaction between the remote substituent and the organometallic end-caps. (C) 2007 Elsevier B. V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sixteen neutral mixed ligand thiosemicarbazone complexes of ruthenium having general formula [Ru(PPh3)(2)L-2], where LH = 1-(arylidine)4-aryl thiosemicarbazones, have been synthesized and characterized. All complexes are diamagnetic and hence ruthenium is in the +2 oxidation state (low-spin d(6), S = 0). The complexes show several intense peaks in the visible region due to allowed metal to ligand charge transfer transitions. The structures of four of the complexes have been determined by single-crystal X-ray diffraction and they show that thiosemicarbazone ligands coordinate to the ruthenium center through the hydrazinic nitrogen and sulfur forming four-membered chelate rings with ruthenium in N2S2P2 coordination environment. In dichloromethane solution, the complexes show two quasi-reversible oxidative responses corresponding to loss of electron from HOMO and HOMO - 1. The E-0 values of the above two oxidations shows good linear relationship with Hammett substituents constant (sigma) as well as with the HOMO energy of the molecules calculated by the EHMO method. A DFT calculation on one representative complex suggests that there is appreciable contribution of the sulfur p-orbitals to the HOMO and HOMO - 1. Thus, assignment of the oxidation state of the metal in such complexes must be made with caution. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Six Ru(II) complexes of formula [Ru(L)(2)(PPh3)(2)] have been prepared where LH = 4-(aryl)thiosemicarbazones of thiophen-2-carbaldehyde. X-ray crystal structures of five of the complexes are reported. In all the complexes ruthenium is six coordinate with a distorted octahedral cis-P-2, cis-N-2, trans-S-2 donor environment, and each of the two thiosemicarbazone ligands are coordinated in a bidentate fashion forming a four membered chelate ring. The complexes undergo a one-electron oxidation at similar to 0.5 V vs. Ag/AgCl. The EPR spectrum of the electrochemically oxidized solution at 100 K shows a rhombic signal, with transitions at g(1) = 2.27, g(2) = 2.00 and g(3) = 1.80. DFT calculations on one of the complexes suggest that there is 35% ruthenium and 17% sulfur orbital contribution to the HOMO. These results suggest that the assignment of metal atom oxidation states in these compounds is not unambiguous. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single crystals of four erbium-chromium sulfides have been grown by chemical vapor transport using iodine as the transporting agent. Single-crystal X-ray diffraction reveals that in Er(3)CrS(6) octahedral sites are occupied exclusively by Cr(3+) cations, leading to one-dimensional CrS(4)(5-) chains of edge-sharing octahedra, while in Er(2)CrS(4), Er(3+), and Cr(2+) cations occupy the available octahedral sites in an ordered manner. By contrast, in Er(6)Cr(2)S(11) and Er(4)CrS(7), Er(3+) and Cr(2+) ions are disordered over the octahedral sites. In Er(2)CrS(4), Er(6)Cr(2)S(11), and Er(4)CrS(7), the network of octahedra generates an anionic framework constructed from M(2)S(5) slabs of varying thickness, linked by one-dimensional octahedral chains. This suggests that these three phases belong to a series in which the anionic framework may be described by the general formula [M(2n+1)S(4n+3)](x-), with charge balancing provided by Er(3+) cations located in sites of high-coordination number within one-dimensional channels defined by the framework. Er(4)CrS(7), Er(6)Cr(2)S(11), and Er(2)CrS(4) may thus be considered as the n = 1, 2, and infinity members of this series. While Er(4)CrS(7) is paramagnetic, successive magnetic transitions associated with ordering of the chromium and erbium sub-lattices are observed on cooling Er(3)CrS(6) (T(C)(Cr) = 30 K; T(C)(Er) = 11 K) and Er(2)CrS(4) (T(N)(Cr) = 42 K, T(N)(Er) = 10 K) whereas Er(6)Cr(2)S(11) exhibits ordering of the chromium sub-lattice only (T(N) = 11.4 K).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A family of phases, CoxTiS2 (0 ≤ x ≤ 0.75) has been prepared and characterised by powder X-ray and neutron diffraction, electrical and thermal transport property measurements, thermal analysis and SQUID magnetometry. With increasing cobalt content, the structure evolves from a disordered arrangement of cobalt ions in octahedral sites located in the van der Waals’ gap (x ≤ 0.2), through three different ordered vacancy phases, to a second disordered phase at x ≥ 0.67. Powder neutron diffraction reveals that both octahedral and tetrahedral inter-layer sites are occupied in Co0.67TiS2. Charge transfer from the cobalt guest to the TiS2 host affords a systematic tuning of the electrical and thermal transport properties. At low levels of cobalt intercalation (x < 0.1), the charge transfer increases the electrical conductivity sufficiently to offset the concomitant reduction in |S|. This, together with a reduction in the overall thermal conductivity leads to thermoelectric figures of merit that are 25 % higher than that of TiS2, ZT reaching 0.30 at 573 K for CoxTiS2 with 0.04 ≤ x ≤ 0.08. Whilst the electrical conductivity is further increased at higher cobalt contents, the reduction in |S| is more marked due to the higher charge carrier concentration. Furthermore both the charge carrier and lattice contributions to the thermal conductivity are increased in the electrically conductive ordered-vacancy phases, with the result that the thermoelectric performance is significantly degraded. These results illustrate the competition between the effects of charge transfer from guest to host and the disorder generated when cobalt cations are incorporated in the inter-layer space.