41 resultados para Electronic Devices and Semiconductor Manufacturing

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper discusses the requirements on the numerical precision for a practical Multiband Ultra-Wideband (UWB) consumer electronic solution. To this end we first present the possibilities that UWB has to offer to the consumer electronics market and the possible range of devices. We then show the performance of a model of the UWB baseband system implemented using floating point precision. Then, by simulation we find the minimal numerical precision required to maintain floating-point performance for each of the specific data types and signals present in the UWB baseband. Finally, we present a full description of the numerical requirements for both the transmit and receive components of the UWB baseband. The numerical precision results obtained in this paper can then be used by baseband designers to implement cost effective UWB systems using System-on-Chip (SoC), FPGA and ASIC technology solutions biased toward the competitive consumer electronics market(1).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: To assess the impact of a closed-loop electronic prescribing, automated dispensing, barcode patient identification and electronic medication administration record (EMAR) system on prescribing and administration errors, confirmation of patient identity before administration, and staff time. Design, setting and participants: Before-and-after study in a surgical ward of a teaching hospital, involving patients and staff of that ward. Intervention: Closed-loop electronic prescribing, automated dispensing, barcode patient identification and EMAR system. Main outcome measures: Percentage of new medication orders with a prescribing error, percentage of doses with medication administration errors (MAEs) and percentage given without checking patient identity. Time spent prescribing and providing a ward pharmacy service. Nursing time on medication tasks. Results: Prescribing errors were identified in 3.8% of 2450 medication orders pre-intervention and 2.0% of 2353 orders afterwards (p<0.001; χ2 test). MAEs occurred in 7.0% of 1473 non-intravenous doses pre-intervention and 4.3% of 1139 afterwards (p = 0.005; χ2 test). Patient identity was not checked for 82.6% of 1344 doses pre-intervention and 18.9% of 1291 afterwards (p<0.001; χ2 test). Medical staff required 15 s to prescribe a regular inpatient drug pre-intervention and 39 s afterwards (p = 0.03; t test). Time spent providing a ward pharmacy service increased from 68 min to 98 min each weekday (p = 0.001; t test); 22% of drug charts were unavailable pre-intervention. Time per drug administration round decreased from 50 min to 40 min (p = 0.006; t test); nursing time on medication tasks outside of drug rounds increased from 21.1% to 28.7% (p = 0.006; χ2 test). Conclusions: A closed-loop electronic prescribing, dispensing and barcode patient identification system reduced prescribing errors and MAEs, and increased confirmation of patient identity before administration. Time spent on medication-related tasks increased.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective To assess the impact of a closed-loop electronic prescribing and automated dispensing system on the time spent providing a ward pharmacy service and the activities carried out. Setting Surgical ward, London teaching hospital. Method All data were collected two months pre- and one year post-intervention. First, the ward pharmacist recorded the time taken each day for four weeks. Second, an observational study was conducted over 10 weekdays, using two-dimensional work sampling, to identify the ward pharmacist's activities. Finally, medication orders were examined to identify pharmacists' endorsements that should have been, and were actually, made. Key findings Mean time to provide a weekday ward pharmacy service increased from 1 h 8 min to 1 h 38 min per day (P = 0.001; unpaired t-test). There were significant increases in time spent prescription monitoring, recommending changes in therapy/monitoring, giving advice or information, and non-productive time. There were decreases for supply, looking for charts and checking patients' own drugs. There was an increase in the amount of time spent with medical and pharmacy staff, and with 'self'. Seventy-eight per cent of patients' medication records could be assessed for endorsements pre- and 100% post-intervention. Endorsements were required for 390 (50%) of 787 medication orders pre-intervention and 190 (21%) of 897 afterwards (P < 0.0001; chi-square test). Endorsements were made for 214 (55%) of endorsement opportunities pre-intervention and 57 (30%) afterwards (P < 0.0001; chi-square test). Conclusion The intervention increased the overall time required to provide a ward pharmacy service and changed the types of activity undertaken. Contact time with medical and pharmacy staff increased. There was no significant change in time spent with patients. Fewer pharmacy endorsements were required post-intervention, but a lower percentage were actually made. The findings have important implications for the design, introduction and use of similar systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As consumers demand more functionality) from their electronic devices and manufacturers supply the demand then electrical power and clock requirements tend to increase, however reassessing system architecture can fortunately lead to suitable counter reductions. To maintain low clock rates and therefore reduce electrical power, this paper presents a parallel convolutional coder for the transmit side in many wireless consumer devices. The coder accepts a parallel data input and directly computes punctured convolutional codes without the need for a separate puncturing operation while the coded bits are available at the output of the coder in a parallel fashion. Also as the computation is in parallel then the coder can be clocked at 7 times slower than the conventional shift-register based convolutional coder (using DVB 7/8 rate). The presented coder is directly relevant to the design of modern low-power consumer devices

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mutual influence of surface geometry (e.g. lattice parameters, morphology) and electronic structure is discussed for Cu-Ni bimetallic (111) surfaces. It is found that on flat surfaces the electronic d-states of the adlayer experience very little influence from the substrate electronic structure which is due to their large separation in binding energies and the close match of Cu and Ni lattice constants. Using carbon monoxide and benzene as probe molecules, it is found that in most cases the reactivity of Cu or Ni adlayers is very similar to the corresponding (111) single crystal surfaces. Exceptions are the adsorption of CO on submonolayers of Cu on Ni(111) and the dissociation of benzene on Ni/Cu(111) which is very different from Ni(111). These differences are related to geometric factors influencing the adsorption on these surfaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article we present for the first time accurate density functional theory (DFT) and time-dependent (TD) DFT data for a series of electronically unsaturated five-coordinate complexes [Mn(CO)(3)(L-2)](-), where L-2 stands for a chelating strong pi-donor ligand represented by catecholate, dithiolate, amidothiolate, reduced alpha-diimine (1,4-dialkyl-1,4-diazabutadiene (R-DAB), 2,2'-bipyridine) and reduced 2,2'-biphosphinine types. The single-crystal X-ray structure of the unusual compound [Na(BPY)][Mn(CO)(3)(BPY)]center dot Et2O and the electronic absorption spectrum of the anion [Mn(CO)(3)(BPY)](-) are new in the literature. The nature of the bidentate ligand determines the bonding in the complexes, which varies between two limiting forms: from completely pi-delocalized diamagnetic {(CO)(3)Mn-L-2}(-) for L-2 = alpha-diimine or biphosphinine, to largely valence-trapped {(CO)(3)Mn-1-L-2(2-)}(-) for L-2(2-) = catecholate, where the formal oxidation states of Mn and L-2 can be assigned. The variable degree of the pi-delocalization in the Mn(L-2) chelate ring is indicated by experimental resonance Raman spectra of [Mn(CO)(3)(L-2)](-) (L-2=3,5-di-tBu-catecholate and iPr-DAB), where accurate assignments of the diagnostically important Raman bands have been aided by vibrational analysis. The L-2 = catecholate type of complexes is known to react with Lewis bases (CO substitution, formation of six-coordinate adducts) while the strongly pi-delocalized complexes are inert. The five-coordinate complexes adopt usually a distorted square pyramidal geometry in the solid state, even though transitions to a trigonal bipyramid are also not rare. The experimental structural data and the corresponding DFT-computed values of bond lengths and angles are in a very good agreement. TD-DFT calculations of electronic absorption spectra of the studied Mn complexes and the strongly pi-delocalized reference compound [Fe(CO)(3)(Me-DAB)] have reproduced qualitatively well the experimental spectra. Analyses of the computed electronic transitions in the visible spectroscopic region show that the lowest-energy absorption band always contains a dominant (in some cases almost exclusive) contribution from a pi(HOMO) -> pi*(LUMO) transition within the MnL2 metallacycle. The character of this optical excitation depends strongly on the composition of the frontier orbitals, varying from a partial L-2 -> Mn charge transfer (LMCT) through a fully delocalized pi(MnL2) -> pi*(MnL2) situation to a mixed (CO)Mn -> L-2 charge transfer (LLCT/MLCT). The latter character is most apparent in the case of the reference complex [Fe(CO)(3)(Me-DAB)]. The higher-lying, usually strongly mixed electronic transitions in the visible absorption region originate in the three lower-lying occupied orbitals, HOMO - 1 to HOMO - 3, with significant metal-d contributions. Assignment of these optical excitations to electronic transitions of a specific type is difficult. A partial LLCT/MLCT character is encountered most frequently. The electronic absorption spectra become more complex when the chelating ligand L-2, such as 2,2'-bipyridine, features two or more closely spaced low-lying empty pi* orbitals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modification of graphene to open a robust gap in its electronic spectrum is essential for its use in field effect transistors and photochemistry applications. Inspired by recent experimental success in the preparation of homogeneous alloys of graphene and boron nitride (BN), we consider here engineering the electronic structure and bandgap of C2xB1−xN1−x alloys via both compositional and configurational modification. We start from the BN end-member, which already has a large bandgap, and then show that (a) the bandgap can in principle be reduced to about 2 eV with moderate substitution of C (x < 0.25); and (b) the electronic structure of C2xB1−xN1−x can be further tuned not only with composition x, but also with the configuration adopted by C substituents in the BN matrix. Our analysis, based on accurate screened hybrid functional calculations, provides a clear understanding of the correlation found between the bandgap and the level of aggregation of C atoms: the bandgap decreases most when the C atoms are maximally isolated, and increases with aggregation of C atoms due to the formation of bonding and anti-bonding bands associated with hybridization of occupied and empty defect states. We determine the location of valence and conduction band edges relative to vacuum and discuss the implications on the potential use of 2D C2xB1−xN1−x alloys in photocatalytic applications. Finally, we assess the thermodynamic limitations on the formation of these alloys using a cluster expansion model derived from first-principles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Health care literature supports the development of accessible interventions that integrate behavioral economics, wearable devices, principles of evidence-based behavior change, and community support. However, there are limited real-world examples of large scale, population-based, member-driven reward platforms. Subsequently, a paucity of outcome data exists and health economic effects remain largely theoretical. To complicate matters, an emerging area of research is defining the role of Superusers, the small percentage of unusually engaged digital health participants who may influence other members. Objective: The objective of this preliminary study is to analyze descriptive data from GOODcoins, a self-guided, free-to-consumer engagement and rewards platform incentivizing walking, running and cycling. Registered members accessed the GOODcoins platform through PCs, tablets or mobile devices, and had the opportunity to sync wearables to track activity. Following registration, members were encouraged to join gamified group challenges and compare their progress with that of others. As members met challenge targets, they were rewarded with GOODcoins, which could be redeemed for planet- or people-friendly products. Methods: Outcome data were obtained from the GOODcoins custom SQL database. The reporting period was December 1, 2014 to May 1, 2015. Descriptive self-report data were analyzed using MySQL and MS Excel. Results: The study period includes data from 1298 users who were connected to an exercise tracking device. Females consisted of 52.6% (n=683) of the study population, 33.7% (n=438) were between the ages of 20-29, and 24.8% (n=322) were between the ages of 30-39. 77.5% (n=1006) of connected and active members met daily-recommended physical activity guidelines of 30 minutes, with a total daily average activity of 107 minutes (95% CI 90, 124). Of all connected and active users, 96.1% (n=1248) listed walking as their primary activity. For members who exchanged GOODcoins, the mean balance was 4,000 (95% CI 3850, 4150) at time of redemption, and 50.4% (n=61) of exchanges were for fitness or outdoor products, while 4.1% (n=5) were for food-related items. Participants were most likely to complete challenges when rewards were between 201-300 GOODcoins. Conclusions: The purpose of this study is to form a baseline for future research. Overall, results indicate that challenges and incentives may be effective for connected and active members, and may play a role in achieving daily-recommended activity guidelines. Registrants were typically younger, walking was the primary activity, and rewards were mainly exchanged for fitness or outdoor products. Remaining to be determined is whether members were already physically active at time of registration and are representative of healthy adherers, or were previously inactive and were incentivized to change their behavior. As challenges are gamified, there is an opportunity to investigate the role of superusers and healthy adherers, impacts on behavioral norms, and how cooperative games and incentives can be leveraged across stratified populations. Study limitations and future research agendas are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To investigate the consequences of cyclometalation for electronic communication in dinuclear ruthenium complexes, a series of 2,3,5,6-tetrakis(2-pyridyl)pyrazine (tppz) bridged diruthenium complexes was prepared and studied. These complexes have a central tppz ligand bridging via nitrogen-to-ruthenium coordination bonds, while each ruthenium atom also binds either a monoanionic, N,C,N'-terdentate 2,6-bis(2'-pyridyl)phenyl (R-N boolean AND C boolean AND N) ligand or a 2,2':6',2 ''-terpyridine (tpy) ligand. The N,C,N'-, that is, biscyclometalation, instead of the latter N,N', N ''-bonding motif significantly changes the electronic properties of the resulting complexes. Starting from well-known [{Ru(tpy)}(2)(mu-tppz)](4+) (tpy = 2,2':2 '',6-terpyridine) ([3](4+)) as a model compound, the complexes [{Ru(R-N boolean AND C boolean AND N)}(mu-tppz){Ru(tpy)}](3+) (R-N boolean AND C(H)boolean AND N = 4-R-1,3-dipyridylbenzene, R = H ([4a](3+)), CO2Me ([4b](3+))), and [{Ru(R-N boolean AND C boolean AND N)}(2)(mu-tppz)](2+), (R = H ([5a](2+)), CO2Me ([5b](2+))) were prepared with one or two N,C,N'-cyclometalated terminal ligands. The oxidation and reduction potentials of cyclometalated [4](3+) and [5](2+) are shifted negatively compared to non-cyclometalated [3](4+), the oxidation processes being affected more significantly. Compared to [3](4+), the electronic spectra of [5](2+) display large bathochromic shifts of the main MLCT transitions in the visible spectral region with low-energy absorptions tailing down to the NIR region. One-electron oxidation of [3](4+) and [5](2+) gives rise to low-energy absorption bands. The comproportionation constants and NIR band shape correspond to delocalized Robin-Day class III compounds. Complexes [4a](3+) (R = H) and [4b](3+) (R = CO2Me) also exhibit strong electronic communication, and notwithstanding the large redox-asymmetry the visible metal-to-ligand charge-transfer absorption is assigned to originate from both metal centers. The potential of the first, ruthenium-based, reversible oxidation process is strongly negatively shifted. On the contrary, the second oxidation is irreversible and cyclometalated ligand-based. Upon one-electron oxidation, a weak and low-energy absorption arises.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of isoelectronic replacement of a neutral nitrogen donor atom by an anionic carbon atom in terpyridine ruthenium(II) complexes on the electronic and photophysical properties of the resulting N,C,N'- and C,N,N'-cyclometalated aryl ruthenium(II) complexes were investigated. To this end, a series of complexes was prepared either with ligands containing exclusively nitrogen donor atoms, that is, [Ru(R-1-tpy)(R-2-tpy)](2+) (R-1, R-2 = H, CO2Et), or bearing either one N,C,N'- or C,N,N'-cyclometalated ligand and one tpy ligand, that is, [Ru(R-1-(NCN)-C-Lambda-N-Lambda)(R-2-tpy)](+) and [Ru(R-1-(CNN)-N-Lambda-N-Lambda)(R-2-tpy)](+), respectively. Single-crystal X-ray structure determinations showed that cyclometalation does not significantly alter the overall geometry of the complexes but does change the bond lengths around the ruthenium(II) center, especially the nitrogen-to-ruthenium bond length trans to the carbanion. Substitution of either of the ligands with electron-withdrawing ester functionalities fine-tuned the electronic properties and resulted in the presence of an IR probe. Using trends obtained from redox potentials, emission energies, IR spectroelectrochemical responses, and the character of the lowest unoccupied molecular orbitals from DFT studies, it is shown that the first reduction process and luminescence are associated with the ester-substituted C,N,N'-cyclometalated ligand in [Ru(EtO2C-(CNN)-N-Lambda-N-Lambda)(tpy)](+). Cyclometalation in an N,C,N'-bonding motif changed the energetic order of the ruthenium d(zx), d(yz), and d(xy) orbitals. The red-shifted absorption in the N,C,N'-cyclometalated complexes is assigned to MLCT transitions to the tpy ligand. The red shift observed upon introduction of the ester moiety is associated with an increase in intensity of low-energy transitions, rather than a red shift of the main transition. Cyclometalation in the C,N,N'-binding motif also red-shifts the absorption, but the corresponding transition is associated with both ligand types. Luminescence of the cyclometalated complexes is relatively independent of the mode of cyclometalation, obeying the energy gap law within each individual series.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The health risks associated with the inhalation or ingestion of cadmium are well documented([1,2]). During the past 18 years, EU legislation has steadily been introduced to restrict its use, leaving a requirement for the development of replacement materials. This paper looks at possible alternatives to various cadmium II-VI dielectric compounds used in the deposition of optical thin-films for various opto-electronic devices. Application areas of particular interest are for infrared multilayer interference filter fabrication and solar cell industries, where cadmium-based coatings currently find widespread use. The results of single and multilayer designs comprising CdTe, CdS, CdSe and PbTe deposited onto group IV and II-VI materials as interference filters for the mid-IR region are presented. Thin films of SnN, SnO2, SnS and SnSe are fabricated by plasma assisted CVD, reactive RF sputtering and thermal evaporation. Examination of these films using FTIR spectroscopy, SEM, EDX analysis and optical characterisation methods provide details of material dispersion, absorption, composition, refractive index, energy band gap and layer thicknesses. The optimisation of deposition parameters in order to synthesise coatings with similar optical and semiconductor properties as those containing cadmium has been investigated. Results of environmental, durability and stability trials are also presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the fast development of the Internet, wireless communications and semiconductor devices, home networking has received significant attention. Consumer products can collect and transmit various types of data in the home environment. Typical consumer sensors are often equipped with tiny, irreplaceable batteries and it therefore of the utmost importance to design energy efficient algorithms to prolong the home network lifetime and reduce devices going to landfill. Sink mobility is an important technique to improve home network performance including energy consumption, lifetime and end-to-end delay. Also, it can largely mitigate the hot spots near the sink node. The selection of optimal moving trajectory for sink node(s) is an NP-hard problem jointly optimizing routing algorithms with the mobile sink moving strategy is a significant and challenging research issue. The influence of multiple static sink nodes on energy consumption under different scale networks is first studied and an Energy-efficient Multi-sink Clustering Algorithm (EMCA) is proposed and tested. Then, the influence of mobile sink velocity, position and number on network performance is studied and a Mobile-sink based Energy-efficient Clustering Algorithm (MECA) is proposed. Simulation results validate the performance of the proposed two algorithms which can be deployed in a consumer home network environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dissymmetrical naphthalene-bridged complexes [Cp′Fe(μ-C10H8)FeCp*] (3; Cp* = η5-C5Me5, Cp′ = η5-C5H2-1,2,4-tBu3) and [Cp′Fe(μ-C10H8)RuCp*] (4) were synthesized via a one-pot procedure from FeCl2(thf)1.5, Cp′K, KC10H8, and [Cp* FeCl(tmeda)] (tmeda = N,N,N′,N′- tetramethylethylenediamine) or [Cp*RuCl]4, respectively. The symmetrically substituted iron ruthenium complex [Cp*Fe(μ-C10H8)RuCp*] (5) bearing two Cp* ligands was prepared as a reference compound. Compounds 3−5 are diamagnetic and display similar molecular structures, where the metal atoms are coordinated to opposite sides of the bridging naphthalene molecule. Cyclic voltammetry and UV/vis spectroelectrochemistry studies revealed that neutral 3−5 can be oxidized to monocations 3+−5+ and dications 32+−52+. The chemical oxidation of 3 and 4 with [Cp2Fe]PF6 afforded the paramagnetic hexafluorophosphate salts [Cp′Fe(μ-C10H8)FeCp*]PF6 ([3]PF6) and [Cp′Fe(μ-C10H8)RuCp*]PF6 ([4]PF6), which were characterized by various spectroscopic techniques, including EPR and 57Fe Mössbauer spectroscopy. The molecular structure of [4]PF6 was determined by X-ray crystallography. DFT calculations support the structural and spectroscopic data and determine the compositions of frontier molecular orbitals in the investigated complexes. The effects of substituting Cp* with Cp′ and Fe with Ru on the electronic structures and the structural and spectroscopic properties are analyzed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Foams are cellular structures, produced by gas bubbles formed during the polyurethane polymerization mixture. Flexible PU foams meet the following two criteria: have a limited resistance to an applied load, being both permeable to air and reversibly deformable. There are two main types of flexible foams, hot and cold cure foams differing in composition and processing temperatures. The hot cure foams are widely applied and represent the main composition of actual foams, while cold cure foams present several processing and property advantages, e.g, faster demoulding time, better humid aging properties and more versatility, as hardness variation with index changes are greater than with hot cure foams. The processing of cold cure foams also is attractive due to the low energy consumption (mould temperature from 30 degrees to 65 degrees C) comparatively to hot cure foams (mould temperature from 30 degrees to 250 degrees C). Another advantage is the high variety of soft materials for low temperature processing moulds. Cold cure foams are diphenylmethane diisocyanate (MDI) based while hot cure foams are toluene diisocyanate (TDI) based. This study is concerned with Viscoelastic flexible foams MDI based for medical applications. Differential Scanning Calorimetry (DSC) was used to characterize the cure kinetics and Dynamical Mechanical Analisys to collect mechanical data. The data obtained from these two experimental procedures were analyzed and associated to establish processing/properties/operation conditions relationships. These maps for the selection of optimized processing/properties/operation conditions are important to achieve better final part properties at lower costs and lead times.