121 resultados para Electrical load forecasting

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Load forecasting is an important task in the management of a power utility. The most recent developments in forecasting involve the use of artificial intelligence techniques, which offer powerful modelling capabilities. This paper discusses these techniques and provides a review of their application to load forecasting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of a combined engineering and statistical Artificial Neural Network model of UK domestic appliance load profiles is presented. The model uses diary-style appliance use data and a survey questionnaire collected from 51 suburban households and 46 rural households during the summer of 2010 and2011 respectively. It also incorporates measured energy data and is sensitive to socioeconomic, physical dwelling and temperature variables. A prototype model is constructed in MATLAB using a two layer feed forward network with back propagation training which has a 12:10:24 architecture. Model outputs include appliance load profiles which can be applied to the fields of energy planning (microrenewables and smart grids), building simulation tools and energy policy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract We present a refined parametric model for forecasting electricity demand which performed particularly well in the recent Global Energy Forecasting Competition (GEFCom 2012). We begin by motivating and presenting a simple parametric model, treating the electricity demand as a function of the temperature and day of the data. We then set out a series of refinements of the model, explaining the rationale for each, and using the competition scores to demonstrate that each successive refinement step increases the accuracy of the model’s predictions. These refinements include combining models from multiple weather stations, removing outliers from the historical data, and special treatments of public holidays.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

More and more households are purchasing electric vehicles (EVs), and this will continue as we move towards a low carbon future. There are various projections as to the rate of EV uptake, but all predict an increase over the next ten years. Charging these EVs will produce one of the biggest loads on the low voltage network. To manage the network, we must not only take into account the number of EVs taken up, but where on the network they are charging, and at what time. To simulate the impact on the network from high, medium and low EV uptake (as outlined by the UK government), we present an agent-based model. We initialise the model to assign an EV to a household based on either random distribution or social influences - that is, a neighbour of an EV owner is more likely to also purchase an EV. Additionally, we examine the effect of peak behaviour on the network when charging is at day-time, night-time, or a mix of both. The model is implemented on a neighbourhood in south-east England using smart meter data (half hourly electricity readings) and real life charging patterns from an EV trial. Our results indicate that social influence can increase the peak demand on a local level (street or feeder), meaning that medium EV uptake can create higher peak demand than currently expected.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In molecular biology, it is often desirable to find common properties in large numbers of drug candidates. One family of methods stems from the data mining community, where algorithms to find frequent graphs have received increasing attention over the past years. However, the computational complexity of the underlying problem and the large amount of data to be explored essentially render sequential algorithms useless. In this paper, we present a distributed approach to the frequent subgraph mining problem to discover interesting patterns in molecular compounds. This problem is characterized by a highly irregular search tree, whereby no reliable workload prediction is available. We describe the three main aspects of the proposed distributed algorithm, namely, a dynamic partitioning of the search space, a distribution process based on a peer-to-peer communication framework, and a novel receiverinitiated load balancing algorithm. The effectiveness of the distributed method has been evaluated on the well-known National Cancer Institute’s HIV-screening data set, where we were able to show close-to linear speedup in a network of workstations. The proposed approach also allows for dynamic resource aggregation in a non dedicated computational environment. These features make it suitable for large-scale, multi-domain, heterogeneous environments, such as computational grids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As low carbon technologies become more pervasive, distribution network operators are looking to support the expected changes in the demands on the low voltage networks through the smarter control of storage devices. Accurate forecasts of demand at the single household-level, or of small aggregations of households, can improve the peak demand reduction brought about through such devices by helping to plan the appropriate charging and discharging cycles. However, before such methods can be developed, validation measures are required which can assess the accuracy and usefulness of forecasts of volatile and noisy household-level demand. In this paper we introduce a new forecast verification error measure that reduces the so called “double penalty” effect, incurred by forecasts whose features are displaced in space or time, compared to traditional point-wise metrics, such as Mean Absolute Error and p-norms in general. The measure that we propose is based on finding a restricted permutation of the original forecast that minimises the point wise error, according to a given metric. We illustrate the advantages of our error measure using half-hourly domestic household electrical energy usage data recorded by smart meters and discuss the effect of the permutation restriction.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new method of clear-air turbulence (CAT) forecasting based on the Lighthill–Ford theory of spontaneous imbalance and emission of inertia–gravity waves has been derived and applied on episodic and seasonal time scales. A scale analysis of this shallow-water theory for midlatitude synoptic-scale flows identifies advection of relative vorticity as the leading-order source term. Examination of leading- and second-order terms elucidates previous, more empirically inspired CAT forecast diagnostics. Application of the Lighthill–Ford theory to the Upper Mississippi and Ohio Valleys CAT outbreak of 9 March 2006 results in good agreement with pilot reports of turbulence. Application of Lighthill–Ford theory to CAT forecasting for the 3 November 2005–26 March 2006 period using 1-h forecasts of the Rapid Update Cycle (RUC) 2 1500 UTC model run leads to superior forecasts compared to the current operational version of the Graphical Turbulence Guidance (GTG1) algorithm, the most skillful operational CAT forecasting method in existence. The results suggest that major improvements in CAT forecasting could result if the methods presented herein become operational.