2 resultados para Electrical characterization of anisotropic conductive adhesive
em CentAUR: Central Archive University of Reading - UK
Resumo:
Anthropogenic pressure influences the two-way interactions between shallow aquifers and coastal lagoons. Aquifer overexploitation may lead to seawater intrusion, and aquifer recharge from rainfall plus irrigation may, in turn, increase the groundwater discharge into the lagoon. We analyse the evolution, since the 1950s up to the present, of the interactions between the Campo de Cartagena Quaternary aquifer and the Mar Menor coastal lagoon (SE Spain). This is a very heterogeneous and anisotropic detrital aquifer, where aquifer–lagoon interface has a very irregular geometry. Using electrical resistivity tomography, we clearly identified the freshwater–saltwater transition zone and detected areas affected by seawater intrusion. Severity of the intrusion was spatially variable and significantly related to the density of irrigation wells in 1950s–1960s, suggesting the role of groundwater overexploitation. We distinguish two different mechanisms by which water from the sea invades the land: (a) horizontal advance of the interface due to a wide exploitation area and (b) vertical rise (upconing) caused by local intensive pumping. In general, shallow parts of the geophysical profiles show higher electrical resistivity associated with freshwater mainly coming from irrigation return flows, with water resources mostly from deep confined aquifers and imported from Tagus river, 400 km north. This indicates a likely reversal of the former seawater intrusion process.
Resumo:
A novel but simple time-of-flight neutron scattering geometry which allows structural anisotropy to be probed directly, simultaneously and thus unambiguously in polymeric and other materials is described. A particular advantage of the simultaneous data collection when coupled to the large area of the beam is that it enables thin films (< 10 μm < 10 mg) to be studied with relative ease. The utility of the technique is illustrated by studies on both deformed poly(styrene) glasses and on thin films of electrical conducting polymers. In the latter case, the power of isotopic substitution is illustrated to great effect. The development of these procedures for use in other areas of materials science is briefly discussed.