17 resultados para Electric measurements.

em CentAUR: Central Archive University of Reading - UK


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Atmospheric electricity measurements were made at Lerwick Observatory in the Shetland Isles (60°09′N, 1°08′W) during most of the 20th century. The Potential Gradient (PG) was measured from 1926 to 84 and the air-earth conduction current (Jc) was measured during the final decade of the PG measurements. Daily Jc values (1978–1984) observed at 15 UT are presented here for the first time, with independently-obtained PG measurements used to select valid data. The 15 UT Jc (1978–1984) spans 0.5–9.5 pA/m2, with median 2.5 pA/m2; the columnar resistance at Lerwick is estimated as 70 PΩm2. Smoke measurements confirm the low pollution properties of the site. Analysis of the monthly variation of Lerwick Jc data shows that winter (DJF) Jc is significantly greater than the summer (JJA) Jc by 20%. The Lerwick atmospheric electricity seasonality differs from the global lightning seasonality, but Jc has a similar seasonal phasing to that observed in Nimbostratus clouds globally, suggesting a role for non-thunderstorm rain clouds in the seasonality of the global circuit.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An electrical current of the order one picoamp per metre squared flows vertically in the Earth's atmosphere, between the ionosphere at approximately 50km altitude and the surface. This current is generated by global thunderstorm activity and is modulated by galactic cosmic rays and atmospheric aerosol. In fair weather conditions, this current cause a vertical atmospheric electric field, commonly measured as a potential gradient. For circumstances other than fair weather conditions, the potential gradient varies, from small steady enhancements in fog to large fluctuations in thunderstorms. The atmospheric potential gradient is continuously monitored at the Reading University Atmospheric Observatory. An account of the variability of the potential gradient on a variety of time scales will be presented.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Bright aurorae can be excited by the acceleration of electrons into the atmosphere in violation of ideal magnetohydrodynamics. Modelling studies predict that the accelerating electric potential consists of electric double layers at the boundaries of an acceleration region but observations suggest that particle acceleration occurs throughout this region. Using multi-spacecraft observations from Cluster we have examined two upward current regions on 14 December 2009. Our observations show that the potential difference below C4 and C3 changed by up to 1.7 kV between their respective crossings, which were separated by 150 s. The field-aligned current density observed by C3 was also larger than that observed by C4. The potential drop above C3 and C4 was approximately the same in both crossings. Using a novel technique of quantitatively comparing the electron spectra measured by Cluster 1 and 3, which were separated in altitude, we determine when these spacecraft made effectively magnetically conjugate observations and use these conjugate observations to determine the instantaneous distribution of the potential drop in the AAR. Our observations show that an average of 15% of the potential drop in the AAR was located between C1 at 6235 km and C3 at 4685 km altitude, with a maximum potential drop between the spacecraft of 500~V and that the majority of the potential drop was below C3. By assuming a spatial invariance along the length of the upward current region, we discuss these observations in terms of temporal changes and the vertical structure of the electrostatic potential drop and in the context of existing models and previous observations single- and multi-spacecraft observations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The weekly dependence of pollutant aerosols in the urban environment of Lisbon (Portugal) is inferred from the records of atmospheric electric field at Portela meteorological station (38°47′N,9°08′W). Measurements were made with a Bendorf electrograph. The data set exists from 1955 to 1990, but due to the contaminating effect of the radioactive fallout during 1960 and 1970s, only the period between 1980 and 1990 is considered here. Using a relative difference method a weekly dependence of the atmospheric electric field is found in these records, which shows an increasing trend between 1980 and 1990. This is consistent with a growth of population in the Lisbon metropolitan area and consequently urban activity, mainly traffic. Complementarily, using a Lomb–Scargle periodogram technique the presence of a daily and weekly cycle is also found. Moreover, to follow the evolution of theses cycles, in the period considered, a simple representation in a colour surface plot representation of the annual periodograms is presented. Further, a noise analysis of the periodograms is made, which validates the results found. Two datasets were considered: all days in the period, and fair-weather days only.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We investigated the plume structure of a piezo-electric sprayer system, set up to release ethanol in a wind tunnel, using a fast response mini-photoionizaton detector. We recorded the plume structure of four different piezo-sprayer configurations: the sprayer alone; with a 1.6-mm steel mesh shield; with a 3.2-mm steel mesh shield; and with a 5 cm circular upwind baffle. We measured a 12 × 12-mm core at the center of the plume, and both a horizontal and vertical cross-section of the plume, all at 100-, 200-, and 400-mm downwind of the odor source. Significant differences in plume structure were found among all configurations in terms of conditional relative mean concentration, intermittency, ratio of peak concentration to conditional mean concentration, and cross-sectional area of the plume. We then measured the flight responses of the almond moth, Cadra cautella, to odor plumes generated with the sprayer alone, and with the upwind baffle piezo-sprayer configuration, releasing a 13:1 ratio of (9Z,12E)-tetradecadienyl acetate and (Z)-9-tetradecenyl acetate diluted in ethanol at release rates of 1, 10, 100, and 1,000 pg/min. For each configuration, differences in pheromone release rate resulted in significant differences in the proportions of moths performing oriented flight and landing behaviors. Additionally, there were apparent differences in the moths’ behaviors between the two sprayer configurations, although this requires confirmation with further experiments. This study provides evidence that both pheromone concentration and plume structure affect moth orientation behavior and demonstrates that care is needed when setting up experiments that use a piezo-electric release system to ensure the optimal conditions for behavioral observations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Chiado’s fire that affected the city centre of Lisbon (Portugal) occurred on 25th August 1988 and had a significant human and environmental impact. This fire was considered the most significant hazard to have occurred in Lisbon city centre after the major earthquake of 1755. A clear signature of this fire is found in the atmospheric electric field data recorded at Portela meteorological station about 8 km NE from the site where the fire started at Chiado. Measurements were made using a Benndorf electrograph with a probe at 1 m height. The atmospheric electric field reached 510 V/m when the wind direction was coming from SW to NE, favourable to the transport of the smoke plume from Chiado to Portela. Such observations agree with predictions using Hysplit air mass trajectory modelling and have been used to estimate the smoke concentration to be ~0.4 mg/m3. It is demonstrated that atmospheric electric field measurements were therefore extremely sensitive to Chiado’s fire. This result is of particular current interest in using networks of atmospheric electric field sensors to complement existing optical and meteorological observations for fire monitoring.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Earth’s global atmospheric electric circuit depends on the upper and lower atmospheric boundaries formed by the ionosphere and the planetary surface. Thunderstorms and electrified rain clouds drive a DC current (∼1 kA) around the circuit, with the current carried by molecular cluster ions; lightning phenomena drive the AC global circuit. The Earth’s near-surface conductivity ranges from 10−7 S m−1 (for poorly conducting rocks) to 10−2 S m−1 (for clay or wet limestone), with a mean value of 3.2 S m−1 for the ocean. Air conductivity inside a thundercloud, and in fair weather regions, depends on location (especially geomagnetic latitude), aerosol pollution and height, and varies from ∼10−14 S m−1 just above the surface to 10−7 S m−1 in the ionosphere at ∼80 km altitude. Ionospheric conductivity is a tensor quantity due to the geomagnetic field, and is determined by parameters such as electron density and electron–neutral particle collision frequency. In the current source regions, point discharge (coronal) currents play an important role below electrified clouds; the solar wind-magnetosphere dynamo and the unipolar dynamo due to the terrestrial rotating dipole moment also apply atmospheric potential differences. Detailed measurements made near the Earth’s surface show that Ohm’s law relates the vertical electric field and current density to air conductivity. Stratospheric balloon measurements launched from Antarctica confirm that the downward current density is ∼1 pA m−2 under fair weather conditions. Fortuitously, a Solar Energetic Particle (SEP) event arrived at Earth during one such balloon flight, changing the observed atmospheric conductivity and electric fields markedly. Recent modelling considers lightning discharge effects on the ionosphere’s electric potential (∼+250 kV with respect to the Earth’s surface) and hence on the fair weather potential gradient (typically ∼130 V m−1 close to the Earth’s surface. We conclude that cloud-to-ground (CG) lightning discharges make only a small contribution to the ionospheric potential, and that sprites (namely, upward lightning above energetic thunderstorms) only affect the global circuit in a miniscule way. We also investigate the effects of mesoscale convective systems on the global circuit.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We examine the stability of lamellar stacks in the presence of an electric field, E-0, applied normal to the lamellae. Calculations are performed with self-consistent field theory (SCFT) supplemented by an exact treatment of the electrostatic energy for linear dielectric materials. The calculations identify a critical electric field, E-0*, beyond which the lamellar stack becomes unstable with respect to undulations. This E-0* rapidly decreases towards zero as the number of lamellae in the stack diverges. Our quantitative predictions for E-0* are consistent with previous experimental measurements by Xu and co-workers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Earth’s global atmospheric electric circuit depends on the upper and lower atmospheric boundaries formed by the ionosphere and the planetary surface. Thunderstorms and electrified rain clouds drive a DC current (∼1 kA) around the circuit, with the current carried by molecular cluster ions; lightning phenomena drive the AC global circuit. The Earth’s near-surface conductivity ranges from 10−7 S m−1 (for poorly conducting rocks) to 10−2 S m−1 (for clay or wet limestone), with a mean value of 3.2 S m−1 for the ocean. Air conductivity inside a thundercloud, and in fair weather regions, depends on location (especially geomagnetic latitude), aerosol pollution and height, and varies from ∼10−14 S m−1 just above the surface to 10−7 S m−1 in the ionosphere at ∼80 km altitude. Ionospheric conductivity is a tensor quantity due to the geomagnetic field, and is determined by parameters such as electron density and electron–neutral particle collision frequency. In the current source regions, point discharge (coronal) currents play an important role below electrified clouds; the solar wind-magnetosphere dynamo and the unipolar dynamo due to the terrestrial rotating dipole moment also apply atmospheric potential differences. Detailed measurements made near the Earth’s surface show that Ohm’s law relates the vertical electric field and current density to air conductivity. Stratospheric balloon measurements launched from Antarctica confirm that the downward current density is ∼1 pA m−2 under fair weather conditions. Fortuitously, a Solar Energetic Particle (SEP) event arrived at Earth during one such balloon flight, changing the observed atmospheric conductivity and electric fields markedly. Recent modelling considers lightning discharge effects on the ionosphere’s electric potential (∼+250 kV with respect to the Earth’s surface) and hence on the fair weather potential gradient (typically ∼130 V m−1 close to the Earth’s surface. We conclude that cloud-to-ground (CG) lightning discharges make only a small contribution to the ionospheric potential, and that sprites (namely, upward lightning above energetic thunderstorms) only affect the global circuit in a miniscule way. We also investigate the effects of mesoscale convective systems on the global circuit.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract. The electrification of stratiform clouds has is little investigated in comparison with thunderstorms and fair weather atmospheric electricity. Theory indicates that, at the upper and lower horizontal boundaries of layer clouds, charging will arise from vertical flow of cosmogenic ions in the global atmospheric electric circuit. Charge is transferred to droplets and particles, affecting cloud microphysical processes such as collision and droplet activation. Due to the lack of in-situ measurements, the magnitude and distribution of charge in stratiform clouds is not well known. A sensitive, inexpensive, balloon borne charge sensor has been developed to make in-situ measurements of edge charging in stratiform cloud using a standard meteorological radiosonde system. The charge sensor has now been flown through over 20 stratiform clouds and frequently detected charge up to 200 pC m-3 near cloud edges. These results are compared with measurements from the same sensor used to investigate charge in particle layers, such as volcanic ash from the Eyjafjallajökull eruption, and Saharan dust in the Cape Verde Isles. 1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pacific ocean temperature anomalies associated with the El Niño–Southern Oscillation (ENSO) modulate atmospheric convection and hence thunderstorm electrification. The generated current flows globally via the atmospheric electric circuit, which can be monitored anywhere on Earth. Atmospheric electricity measurements made at Shetland (in Scotland) display a mean global circuit response to ENSO that is characterized by strengthening during 'El Niño' conditions, and weakening during 'La Niña' conditions. Examining the hourly varying response indicates that a potential gradient (PG) increase around noon UT is likely to be associated with a change in atmospheric convection and resultant lightning activity over equatorial Africa and Eastern Asia. A secondary increase in PG just after midnight UT can be attributed to more shower clouds in the central Pacific ocean during an 'El Niño'.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Measurements of the electrical characteristics of the atmosphere above the surface have been made for over 200 years, from a variety of different platforms, including kites, balloons, rockets and aircraft. From these measurements, a great deal of information about the electrical characteristics of the atmosphere has been gained, assisting our understanding of the global atmospheric electric circuit, thunderstorm electrification and lightning generation mechanisms, discovery of transient luminous events above thunderstorms, and many other electrical phenomena. This paper surveys the history of atmospheric electrical measurements aloft, from the earliest manned balloon ascents to current day observations with free balloons and aircraft. Measurements of atmospheric electrical parameters in a range of meteorological conditions are described, including clear air conditions, polluted conditions, non-thunderstorm clouds, and thunderstorm clouds, spanning a range of atmospheric conditions, from fair weather, to the most electrically active.