3 resultados para Edwin R. Starbird

em CentAUR: Central Archive University of Reading - UK


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The International System of Units (SI) is founded on seven base units, the metre, kilogram, second, ampere, kelvin, mole and candela corresponding to the seven base quantities of length, mass, time, electric current, thermodynamic temperature, amount of substance and luminous intensity. At its 94th meeting in October 2005, the International Committee for Weights and Measures (CIPM) adopted a recommendation on preparative steps towards redefining the kilogram, ampere, kelvin and mole so that these units are linked to exactly known values of fundamental constants. We propose here that these four base units should be given new definitions linking them to exactly defined values of the Planck constant h, elementary charge e, Boltzmann constant k and Avogadro constant NA, respectively. This would mean that six of the seven base units of the SI would be defined in terms of true invariants of nature. In addition, not only would these four fundamental constants have exactly defined values but also the uncertainties of many of the other fundamental constants of physics would be either eliminated or appreciably reduced. In this paper we present the background and discuss the merits of these proposed changes, and we also present possible wordings for the four new definitions. We also suggest a novel way to define the entire SI explicitly using such definitions without making any distinction between base units and derived units. We list a number of key points that should be addressed when the new definitions are adopted by the General Conference on Weights and Measures (CGPM), possibly by the 24th CGPM in 2011, and we discuss the implications of these changes for other aspects of metrology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The kilogram, the base unit of mass in the International System of Units (SI), is defined as the mass m(K) of the international prototype of the kilogram. Clearly, this definition has the effect of fixing the value of m(K) to be one kilogram exactly. In this paper, we review the benefits that would accrue if the kilogram were redefined so as to fix the value of either the Planck constant h or the Avogadro constant NA instead of m(K), without waiting for the experiments to determine h or NA currently underway to reach their desired relative standard uncertainty of about 10−8. A significant reduction in the uncertainties of the SI values of many other fundamental constants would result from either of these new definitions, at the expense of making the mass m(K) of the international prototype a quantity whose value would have to be determined by experiment. However, by assigning a conventional value to m(K), the present highly precise worldwide uniformity of mass standards could still be retained. The advantages of redefining the kilogram immediately outweigh any apparent disadvantages, and we review the alternative forms that a new definition might take.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We review the proposal of the International Committee for Weights and Measures (Comité International des Poids et Mesures, CIPM), currently being considered by the General Conference on Weights and Measures (Conférences Générales des Poids et Mesures, CGPM), to revise the International System of Units (Le Système International d’Unitès, SI). The proposal includes new definitions for four of the seven base units of the SI, and a new form of words to present the definitions of all the units. The objective of the proposed changes is to adopt definitions referenced to constants of nature, taken in the widest sense, so that the definitions may be based on what are believed to be true invariants. In particular, whereas in the current SI the kilogram, ampere, kelvin and mole are linked to exact numerical values of the mass of the international prototype of the kilogram, the magnetic constant (permeability of vacuum), the triple-point temperature of water and the molar mass of carbon-12, respectively, in the new SI these units are linked to exact numerical values of the Planck constant, the elementary charge, the Boltzmann constant and the Avogadro constant, respectively. The new wording used expresses the definitions in a simple and unambiguous manner without the need for the distinction between base and derived units. The importance of relations among the fundamental constants to the definitions, and the importance of establishing a mise en pratique for the realization of each definition, are also discussed.