11 resultados para Economic indicators
em CentAUR: Central Archive University of Reading - UK
Resumo:
This paper examines the significance of widely used leading indicators of the UK economy for predicting the cyclical pattern of commercial real estate performance. The analysis uses monthly capital value data for UK industrials, offices and retail from the Investment Property Databank (IPD). Prospective economic indicators are drawn from three sources namely, the series used by the US Conference Board to construct their UK leading indicator and the series deployed by two private organisations, Lombard Street Research and NTC Research, to predict UK economic activity. We first identify turning points in the capital value series adopting techniques employed in the classical business cycle literature. We then estimate probit models using the leading economic indicators as independent variables and forecast the probability of different phases of capital values, that is, periods of declining and rising capital values. The forecast performance of the models is tested and found to be satisfactory. The predictability of lasting directional changes in property performance represents a useful tool for real estate investment decision-making.
Resumo:
We evaluate a number of real estate sentiment indices to ascertain current and forward-looking information content that may be useful for forecasting demand and supply activities. Analyzing the dynamic relationships within a Vector Auto-Regression (VAR) framework and using the quarterly US data over 1988-2010, we test the efficacy of several sentiment measures by comparing them with other coincident economic indicators. Overall, our analysis suggests that the sentiment in real estate convey valuable information that can help predict changes in real estate returns. These findings have important implications for investment decisions, from consumers' as well as institutional investors' perspectives.
Resumo:
We evaluate a number of real estate sentiment indices to ascertain current and forward-looking information content that may be useful for forecasting the demand and supply activities. Our focus lies on sector-specific surveys targeting the players from the supply-side of both residential and non-residential real estate markets. Analyzing the dynamic relationships within a Vector Auto-Regression (VAR) framework, we test the efficacy of these indices by comparing them with other coincident indicators in predicting real estate returns. Overall, our analysis suggests that sentiment indicators convey important information which should be embedded in the modeling exercise to predict real estate market returns. Generally, sentiment indices show better information content than broad economic indicators. The goodness of fit of our models is higher for the residential market than for the non-residential real estate sector. The impulse responses, in general, conform to our theoretical expectations. Variance decompositions and out-of-sample predictions generally show desired contribution and reasonable improvement respectively, thus upholding our hypothesis. Quite remarkably, consistent with the theory, the predictability swings when we look through different phases of the cycle. This perhaps suggests that, e.g. during recessions, market players’ expectations may be more accurate predictor of the future performances, conceivably indicating a ‘negative’ information processing bias and thus conforming to the precautionary motive of consumer behaviour.
Resumo:
In this paper, we analyze the drivers of the housing markets in Panama City. To the best of our knowledge, no formal academic analysis has been documented on the Panamanian housing market. In this paper, we outline key unique characteristics of the market and provide a brief review of broader economic indicators and housing market literature. Using a unique dataset comprising property-level information over 2007–2014, we employ a hedonic modeling framework to analyze the impacts of certain amenities and drivers that may affect housing values. The results indicate several unique features of the Panamanian housing market.
Resumo:
The effects of data uncertainty on real-time decision-making can be reduced by predicting early revisions to US GDP growth. We show that survey forecasts efficiently anticipate the first-revised estimate of GDP, but that forecasting models incorporating monthly economic indicators and daily equity returns provide superior forecasts of the second-revised estimate. We consider the implications of these findings for analyses of the impact of surprises in GDP revision announcements on equity markets, and for analyses of the impact of anticipated future revisions on announcement-day returns.
Resumo:
Integrated Arable Farming Systems (IAFS), which involve a reduction in the use of off-farm inputs, are attracting considerable research interest in the UK. The objectives of these systems experiments are to compare their financial performance with that from conventional or current farming practices. To date, this comparison has taken little account of any environmental benefits (or disbenefits) of the two systems. The objective of this paper is to review the assessment methodologies available for the analysis of environmental impacts. To illustrate the results of this exercise, the methodology and environmental indicators chosen are then applied to data from one of the LINK - Integrated Farming Systems experimental sites. Data from the Pathhead site in Southern Scotland are used to evaluate the use of invertebrates and nitrate loss as environmental indicators within IAFS. The results suggest that between 1992 and 1995 the biomass of earthworms fell by 28 kg per hectare on the integrated rotation and rose by 31 kg per hectare on the conventional system. This led to environmental costs ranging between £2.24 and £13.44 per hectare for the integrated system and gains of between £2.48 and £14.88 for the conventional system. In terms of nitrate, the integrated system had an estimated loss of £72.21 per hectare in comparison to £149.40 per hectare on the conventional system. Conclusions are drawn about the advantages and disadvantages of this type of analytical framework. Keywords: Farming systems; IAFS; Environmental valuation; Economics; Earthworms; Nitrates; Soil fauna
Resumo:
Indicators are commonly recommended as tools for assessing the attainment of development, and the current vogue is for aggregating a number of indicators together into a single index. It is claimed that such indices of development help facilitate maximum impact in policy terms by appealing to those who may not necessarily have technical expertise in data collection, analysis and interpretation. In order to help counter criticisms of over-simplification, those advocating such indices also suggest that the raw data be provided so as to allow disaggregation into component parts and hence facilitate a more subtle interpretation if a reader so desires. This paper examines the problems involved with interpreting indices of development by focusing on the United Nations Development Programmes (UNDP) Human Development Index (HDI) published each year in the Human Development Reports (HDRs). The HDI was intended to provide an alternative to the more economic based indices, such as GDP, commonly used within neo-liberal development agendas. The paper explores the use of the HDI as a gauge of human development by making comparisons between two major political and economic communities in Africa (ECOWAS and SADC). While the HDI did help highlight important changes in human development as expressed by the HDI over 10 years, it is concluded that the HDI and its components are difficult to interpret as methodologies have changed significantly and the 'averaging' nature of the HDI could hide information unless care is taken. The paper discusses the applicability of alternative models to the HDI such as the more neo-populist centred methods commonly advocated for indicators of sustainable development. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The main objectives of this paper are to: firstly, identify key issues related to sustainable intelligent buildings (environmental, social, economic and technological factors); develop a conceptual model for the selection of the appropriate KPIs; secondly, test critically stakeholder's perceptions and values of selected KPIs intelligent buildings; and thirdly develop a new model for measuring the level of sustainability for sustainable intelligent buildings. This paper uses a consensus-based model (Sustainable Built Environment Tool- SuBETool), which is analysed using the analytical hierarchical process (AHP) for multi-criteria decision-making. The use of the multi-attribute model for priority setting in the sustainability assessment of intelligent buildings is introduced. The paper commences by reviewing the literature on sustainable intelligent buildings research and presents a pilot-study investigating the problems of complexity and subjectivity. This study is based upon a survey perceptions held by selected stakeholders and the value they attribute to selected KPIs. It is argued that the benefit of the new proposed model (SuBETool) is a ‘tool’ for ‘comparative’ rather than an absolute measurement. It has the potential to provide useful lessons from current sustainability assessment methods for strategic future of sustainable intelligent buildings in order to improve a building's performance and to deliver objective outcomes. Findings of this survey enrich the field of intelligent buildings in two ways. Firstly, it gives a detailed insight into the selection of sustainable building indicators, as well as their degree of importance. Secondly, it tesst critically stakeholder's perceptions and values of selected KPIs intelligent buildings. It is concluded that the priority levels for selected criteria is largely dependent on the integrated design team, which includes the client, architects, engineers and facilities managers.
Resumo:
The sustainable intelligent building is a building that has the best combination of environmental, social, economic and technical values. And its sustainability assessment is related with system engineering methods and multi-criteria decision-making. Therefore firstly, the wireless monitoring system of sustainable parameters for intelligent buildings is achieved; secondly, the indicators and key issues based on the “whole life circle” for sustainability of intelligent buildings are researched; thirdly, the sustainable assessment model identified on the structure entropy and fuzzy analytic hierarchy process is proposed.
Resumo:
The chapter examines how far medieval economic crises can be identified by analysing the residuals from a simultaneous equation model of the medieval English economy. High inflation, falls in gross domestic product and large intermittent changes in wage rates are all considered as potential indicators of crisis. Potential causal factors include bad harvests, wars and political instability. The chapter suggests that crises arose when a combination of different problems overwhelmed the capacity of government to address them. It may therefore be a mistake to look for a single cause of any crisis. The coincidence of separate problems is a more plausible explanation of many crises.