143 resultados para EU-ACP
em CentAUR: Central Archive University of Reading - UK
Resumo:
Consumers are often exposed to brand names presented concurrently with information such as brand claims and warnings, prior to making product choices. As implicit memory has been implicated in the consumer choice process, two experiments were conducted to assess the influence of additional information, namely simple positive and negative statements, on implicit and explicit memory tasks. In Experiment 1, the mere presence of additional statements at study significantly reduced performance on a two-alternatives forced recognition task. However, the same manipulation had no effect on implicit preference judgement task performance. The valence of the accompanying information had no effect on either task. In Experiment 2, using modified implicit and explicit choice tasks, performance on the former was unaffected by statement valence, whereas the latter task was. Hence, positive priming was obtained for brand names previously shown with negative information. The results of the experiments are discussed in relation to both implicit memory and consumer choice.
Resumo:
Two experiments investigated transfer effects in implicit memory and consumer choice, using a preference judgement task. Experiment 1 examined whether it is possible to obtain priming for unfamiliar food labels. Additionally, it investigated whether the experience of seeing a brand name with a particular product type would benefit subsequent processing of the brand name when linked with a different product type. Experiment 2 examined whether changes in modality between study and test would affect priming for unfamiliar brand names. Both questions are theoretically important, as well as pertaining to practical concerns in the consumer choice literature. Experiment 1 demonstrated significant priming for unfamiliar food labels, and established that priming was unaffected by changing the product type with which the brand name was associated. In Experiment 2, priming on both auditory and visual versions of the preference judgement task was reduced by changes in modality. The results and implications are discussed in relation to consumer choice and current theories of implicit memory.
Resumo:
Three experiments examine the effect of different forms of computer-generated advice on concurrent and subsequent performance of individuals controlling a simulated intensive-care task. Experiment 1 investigates the effect of optional and compulsory advice and shows that both result in an improvement in subjects' performance while receiving the advice, and also in an improvement in subsequent unaided performance. However, although the advice compliance displayed by the optional advice group shows a strong correlation with subsequent unaided performance, compulsory advice has no extra benefit over the optional use of advice. Experiment 2 examines the effect of providing users with on-line explanations of the advice, as well as providing less specific advice. The results show that both groups perform at the same level on the task as the advice groups from Experiment 1, although subjects receiving explanations scored significantly higher on a written post-task questionnaire. Experiment 3 investigates in more detail the relationship between advice compliance and performance. The results reveal a complex relationship between natural ability on the task and the following of advice, in that people who use the advice more tend to perform either better or worse than the more moderate users. The theoretical and practical implications of these experiments are discussed.
Resumo:
Changes in atmospheric ozone have occurred since the preindustrial era as a result of increasing anthropogenic emissions. Within ACCENT, a European Network of Excellence, ozone changes between 1850 and 2000 are assessed for the troposphere and the lower stratosphere ( up to 30 km) by a variety of seven chemistry-climate models and three chemical transport models. The modeled ozone changes are taken as input for detailed calculations of radiative forcing. When only changes in chemistry are considered ( constant climate) the modeled global-mean tropospheric ozone column increase since preindustrial times ranges from 7.9 DU to 13.8 DU among the ten participating models, while the stratospheric column reduction lies between 14.1 DU and 28.6 DU in the models considering stratospheric chemistry. The resulting radiative forcing is strongly dependent on the location and altitude of the modeled ozone change and varies between 0.25 Wm(-2) and 0.45 Wm(-2) due to ozone change in the troposphere and - 0.123 Wm(-2) and + 0.066 Wm(-2) due to the stratospheric ozone change. Changes in ozone and other greenhouse gases since preindustrial times have altered climate. Six out of the ten participating models have performed an additional calculation taking into account both chemical and climate change. In most models the isolated effect of climate change is an enhancement of the tropospheric ozone column increase, while the stratospheric reduction becomes slightly less severe. In the three climate-chemistry models with detailed tropospheric and stratospheric chemistry the inclusion of climate change increases the resulting radiative forcing due to tropospheric ozone change by up to 0.10 Wm(-2), while the radiative forcing due to stratospheric ozone change is reduced by up to 0.034 Wm(-2). Considering tropospheric and stratospheric change combined, the total ozone column change is negative while the resulting net radiative forcing is positive.
Resumo:
This paper presents an overview of the meteorology and planetary boundary layer structure observed during the NAMBLEX field campaign to aid interpretation of the chemical and aerosol measurements. The campaign has been separated into five periods corresponding to the prevailing synoptic condition. Comparisons between meteorological measurements ( UHF wind profiler, Doppler sodar, sonic aneometers mounted on a tower at varying heights and a standard anemometer) and the ECMWF analysis at 10 m and 1100 m identified days when the internal boundary layer was decoupled from the synoptic flow aloft. Generally the agreement was remarkably good apart from during period one and on a few days during period four when the diurnal swing in wind direction implies a sea/land breeze circulation near the surface. During these periods the origin of air sampled at Mace Head would not be accurately represented by back trajectories following the winds resolved in ECMWF analyses. The wind profiler observations give a detailed record of boundary layer structure including an indication of its depth, average wind speed and direction. Turbulence statistics have been used to assess the height to which the developing internal boundary layer, caused by the increased surface drag at the coast, reaches the sampling location under a wide range of marine conditions. Sampling conducted below 10 m will be impacted by emission sources at the shoreline in all wind directions and tidal conditions, whereas sampling above 15 m is unlikely to be affected in any of the wind directions and tidal heights sampled during the experiment.
Resumo:
Much uncertainty in the value of the imaginary part of the refractive index of mineral dust contributes to uncertainty in the radiative effect of mineral dust in the atmosphere. A synthesis of optical, chemical and physical in-situ aircraft measurements from the DODO experiments during February and August 2006 are used to calculate the refractive index mineral dust encountered over West Africa. Radiative transfer modeling and measurements of broadband shortwave irradiance at a range of altitudes are used to test and validate these calculations for a specific dust event on 23 August 2006 over Mauritania. Two techniques are used to determine the refractive index: firstly a method combining measurements of scattering, absorption, size distributions and Mie code simulations, and secondly a method using composition measured on filter samples to apportion the content of internally mixed quartz, calcite and iron oxide-clay aggregates, where the iron oxide is represented by either hematite or goethite and clay by either illite or kaolinite. The imaginary part of the refractive index at 550 nm (ni550) is found to range between 0.0001 i to 0.0046 i, and where filter samples are available, agreement between methods is found depending on mineral combination assumed. The refractive indices are also found to agree well with AERONET data where comparisons are possible. ni550 is found to vary with dust source, which is investigated with the NAME model for each case. The relationship between both size distribution and ni550 on the accumulation mode single scattering albedo at 550 nm (ω0550) are examined and size distribution is found to have no correlation to ω0550, while ni550 shows a strong linear relationship with ω0550. Radiative transfer modeling was performed with different models (Mie-derived refractive indices, but also filter sampling composition assuming both internal and external mixing). Our calculations indicate that Mie-derived values of ni550 and the externally mixed dust where the iron oxide-clay aggregate corresponds to the goethite-kaolinite combination result in the best agreement with irradiance measurements. The radiative effect of the dust is found to be very sensitive to the mineral combination (and hence refractive index) assumed, and to whether the dust is assumed to be internally or externally mixed.
Resumo:
The spatial distribution of aerosol chemical composition and the evolution of the Organic Aerosol (OA) fraction is investigated based upon airborne measurements of aerosol chemical composition in the planetary boundary layer across Europe. Sub-micron aerosol chemical composition was measured using a compact Time-of-Flight Aerosol Mass Spectrometer (cToF-AMS). A range of sampling conditions were evaluated, including relatively clean background conditions, polluted conditions in North-Western Europe and the near-field to far-field outflow from such conditions. Ammonium nitrate and OA were found to be the dominant chemical components of the sub-micron aerosol burden, with mass fractions ranging from 20--50% each. Ammonium nitrate was found to dominate in North-Western Europe during episodes of high pollution, reflecting the enhanced NO_x and ammonia sources in this region. OA was ubiquitous across Europe and concentrations generally exceeded sulphate by 30--160%. A factor analysis of the OA burden was performed in order to probe the evolution across this large range of spatial and temporal scales. Two separate Oxygenated Organic Aerosol (OOA) components were identified; one representing an aged-OOA, termed Low Volatility-OOA and another representing fresher-OOA, termed Semi Volatile-OOA on the basis of their mass spectral similarity to previous studies. The factors derived from different flights were not chemically the same but rather reflect the range of OA composition sampled during a particular flight. Significant chemical processing of the OA was observed downwind of major sources in North-Western Europe, with the LV-OOA component becoming increasingly dominant as the distance from source and photochemical processing increased. The measurements suggest that the aging of OA can be viewed as a continuum, with a progression from a less oxidised, semi-volatile component to a highly oxidised, less-volatile component. Substantial amounts of pollution were observed far downwind of continental Europe, with OA and ammonium nitrate being the major constituents of the sub-micron aerosol burden. Such anthropogenically perturbed air masses can significantly perturb regional climate far downwind of major source regions.
Resumo:
Aerosols and their precursors are emitted abundantly by transport activities. Transportation constitutes one of the fastest growing activities and its growth is predicted to increase significantly in the future. Previous studies have estimated the aerosol direct radiative forcing from one transport sub-sector, but only one study to our knowledge estimated the range of radiative forcing from the main aerosol components (sulphate, black carbon (BC) and organic carbon) for the whole transportation sector. In this study, we compare results from two different chemical transport models and three radiation codes under different hypothesis of mixing: internal and external mixing using emission inventories for the year 2000. The main results from this study consist of a positive direct radiative forcing for aerosols emitted by road traffic of +20±11 mW m−2 for an externally mixed aerosol, and of +32±13 mW m−2 when BC is internally mixed. These direct radiative forcings are much higher than the previously published estimate of +3±11 mW m−2. For transport activities from shipping, the net direct aerosol radiative forcing is negative. This forcing is dominated by the contribution of the sulphate. For both an external and an internal mixture, the radiative forcing from shipping is estimated at −26±4 mW m−2. These estimates are in very good agreement with the range of a previously published one (from −46 to −13 mW m−2) but with a much narrower range. By contrast, the direct aerosol forcing from aviation is estimated to be small, and in the range −0.9 to +0.3 mW m−2.
Resumo:
In the summer 2000 EXPORT aircraft campaign (European eXport of Precursors and Ozone by long-Range Transport), two comprehensively instrumented research aircraft measuring a variety of chemical species flew wing tip to wing tip for a period of one and a quarter hours. During this interval a comparison was undertaken of the measurements of nitrogen oxide (NO), odd nitrogen species (NOy), carbon monoxide (CO) and ozone (O3). The comparison was performed at two different flight levels, which provided a 10-fold variation in the concentrations of both NO (10 to 1000 parts per trillion by volume (pptv)) and NOy (200 to over 2500 pptv). Large peaks of NO and NOy observed from the Falcon 20, which were at first thought to be from the exhaust of the C-130, were also detected on the 4 channel NOxy instrument aboard the C-130. These peaks were a good indication that both aircraft were in the same air mass and that the Falcon 20 was not in the exhaust plume of the C-130. Correlations and statistical analysis are presented between the instruments used on the two separate aircraft platforms. These were found to be in good agreement giving a high degree of correlation for the ambient air studied. Any deviations from the correlations are accounted for in the estimated inaccuracies of the instruments. These results help to establish that the instruments aboard the separate aircraft are reliably able to measure the corresponding chemical species in the range of conditions sampled and that data collected by both aircraft can be co-ordinated for purposes of interpretation.
Resumo:
The kinetics of uptake of gaseous N2O5 on submicron aerosols containing NaCl and natural sea salt have been investigated in a flow reactor as a function of relative humidity (RH) in the range 30-80% at 295±2K and a total pressure of 1bar. The measured uptake coefficients, γ, were larger on the aerosols containing sea salt compared to those of pure NaCl, and in both cases increased with increasing RH. These observations are explained in terms of the variation in the size of the salt droplets, which leads to a limitation in the uptake rate into small particles. After correction for this effect the uptake coefficients are independent of relative humidity, and agree with those measured previously on larger droplets. A value of γ=0.025 is recommended for the reactive uptake coefficient for N2O5 on deliquesced sea salt droplets at 298K and RH>40%.
Resumo:
Pollutant plumes with enhanced concentrations of trace gases and aerosols were observed over the southern coast of West Africa during August 2006 as part of the AMMA wet season field campaign. Plumes were observed both in the mid and upper troposphere. In this study we examined the origin of these pollutant plumes, and their potential to photochemically produce ozone (O3) downwind over the Atlantic Ocean. Their possible contribution to the Atlantic O3 maximum is also discussed. Runs using the BOLAM mesoscale model including biomass burning carbon monoxide (CO) tracers were used to confirm an origin from central African biomass burning fires. The plumes measured in the mid troposphere (MT) had significantly higher pollutant concentrations over West Africa compared to the upper tropospheric (UT) plume. The mesoscale model reproduces these differences and the two different pathways for the plumes at different altitudes: transport to the north-east of the fire region, moist convective uplift and transport to West Africa for the upper tropospheric plume versus north-west transport over the Gulf of Guinea for the mid-tropospheric plume. Lower concentrations in the upper troposphere are mainly due to enhanced mixing during upward transport. Model simulations suggest that MT and UT plumes are 16 and 14 days old respectively when measured over West Africa. The ratio of tracer concentrations at 600 hPa and 250 hPa was estimated for 14–15 August in the region of the observed plumes and compares well with the same ratio derived from observed carbon dioxide (CO2) enhancements in both plumes. It is estimated that, for the period 1–15 August, the ratio of Biomass Burning (BB) tracer concentration transported in the UT to the ones transported in the MT is 0.6 over West Africa and the equatorial South Atlantic. Runs using a photochemical trajectory model, CiTTyCAT, initialized with the observations, were used to estimate in-situ net photochemical O3 production rates in these plumes during transport downwind of West Africa. The mid-troposphere plume spreads over altitude between 1.5 and 6 km over the Atlantic Ocean. Even though the plume was old, it was still very photochemically active (mean net O3 production rates over 10 days of 2.6 ppbv/day and up to 7 ppbv/day during the first days) above 3 km especially during the first few days of transport westward. It is also shown that the impact of high aerosol loads in the MT plume on photolysis rates serves to delay the peak in modelled O3 concentrations. These results suggest that a significant fraction of enhanced O3 in mid-troposphere over the Atlantic comes from BB sources during the summer monsoon period. According to simulated occurrence of such transport, BB may be the main source for O3 enhancement in the equatorial south Atlantic MT, at least in August 2006. The upper tropospheric plume was also still photochemically active, although mean net O3 production rates were slower (1.3 ppbv/day). The results suggest that, whilst the transport of BB pollutants to the UT is variable (as shown by the mesoscale model simulations), pollution from biomass burning can make an important contribution to additional photochemical production of O3 in addition to other important sources such as nitrogen oxides (NOx) from lightning.
Resumo:
In April–July 2008, intensive measurements were made of atmospheric composition and chemistry in Sabah, Malaysia, as part of the "Oxidant and particle photochemical processes above a South-East Asian tropical rainforest" (OP3) project. Fluxes and concentrations of trace gases and particles were made from and above the rainforest canopy at the Bukit Atur Global Atmosphere Watch station and at the nearby Sabahmas oil palm plantation, using both ground-based and airborne measurements. Here, the measurement and modelling strategies used, the characteristics of the sites and an overview of data obtained are described. Composition measurements show that the rainforest site was not significantly impacted by anthropogenic pollution, and this is confirmed by satellite retrievals of NO2 and HCHO. The dominant modulators of atmospheric chemistry at the rainforest site were therefore emissions of BVOCs and soil emissions of reactive nitrogen oxides. At the observed BVOC:NOx volume mixing ratio (~100 pptv/pptv), current chemical models suggest that daytime maximum OH concentrations should be ca. 105 radicals cm−3, but observed OH concentrations were an order of magnitude greater than this. We confirm, therefore, previous measurements that suggest that an unexplained source of OH must exist above tropical rainforest and we continue to interrogate the data to find explanations for this.
Resumo:
Chemical and meteorological parameters measured on board the Facility for Airborne Atmospheric Measurements (FAAM) BAe 146 Atmospheric Research Aircraft during the African Monsoon Multidisciplinary Analysis (AMMA) campaign are presented to show the impact of NOx emissions from recently wetted soils in West Africa. NO emissions from soils have been previously observed in many geographical areas with different types of soil/vegetation cover during small scale studies and have been inferred at large scales from satellite measurements of NOx. This study is the first dedicated to showing the emissions of NOx at an intermediate scale between local surface sites and continental satellite measurements. The measurements reveal pronounced mesoscale variations in NOx concentrations closely linked to spatial patterns of antecedent rainfall. Fluxes required to maintain the NOx concentrations observed by the BAe-146 in a number of cases studies and for a range of assumed OH concentrations (1×106 to 1×107 molecules cm−3) are calculated to be in the range 8.4 to 36.1 ng N m−2 s−1. These values are comparable to the range of fluxes from 0.5 to 28 ng N m−2 s−1 reported from small scale field studies in a variety of non-nutrient rich tropical and sub-tropical locations reported in the review of Davidson and Kingerlee (1997). The fluxes calculated in the present study have been scaled up to cover the area of the Sahel bounded by 10 to 20 N and 10 E to 20 W giving an estimated emission of 0.03 to 0.30 Tg N from this area for July and August 2006. The observed chemical data also suggest that the NOx emitted from soils is taking part in ozone formation as ozone concentrations exhibit similar fine scale structure to the NOx, with enhancements over the wet soils. Such variability can not be explained on the basis of transport from other areas. Delon et al. (2008) is a companion paper to this one which models the impact of soil NOx emissions on the NOx and ozone concentration over West Africa during AMMA. It employs an artificial neural network to define the emissions of NOx from soils, integrated into a coupled chemistry-dynamics model. The results are compared to the observed data presented in this paper. Here we compare fluxes deduced from the observed data with the model-derived values from Delon et al. (2008).