45 resultados para ENTOMOPATHOGENIC FUNGI

em CentAUR: Central Archive University of Reading - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

An isolate of Gliocladium virens from disease affected soil in a commercial tomato greenhouse proved highly antagonistic to Fusarium oxysporum f.sp. lycopersici, used together with an isolate of the nematophagus fungus Verticillium chlamydosporium. Significant disease control was obtained when young mycelial preparation (on a food-base culture) of the G. virens together with V. chlamydosporium was applied in potting medium. Similar results were observed when a Trichoderma harzianum isolate was treated in combination with the V. chlamydosporium isolate. Most promising, in terms of minimizing the Fusarium wilt of tomato incidence, was also the effect of the bacteria associated with entomopathogenic nematodes (Steinernema spp.), Pseudomonas oryzihabitans and Xenorhabdus nematophilus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of arbuscular mycorrhizal colonization of Leucanthemum vulgare on parasitism of a leaf-mining insect was studied in a field and a laboratory experiment. In the field, parasitism of Chromatomyia syngenesiae by Diglyphus isaea was lower on mycorrhizal plants, compared with plants where the association was reduced. A laboratory experiment, in which L. vulgare was inoculated with three species of AM fungi, showed that the effects on parasitism rates were mycorrhizal species-dependent. Some fungal combinations increased parasitism, some decreased it, while others had no effect. It is concluded that the most likely cause of these differences is plant size, with parasitoid searching efficiency being reduced on the larger plants, resulting from certain mycorrhizal species combinations. However, a mycorrhizal effect on herbivore-produced plant volatiles cannot be ruled out.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three concentrations of Xenorhabdus nematophila and Xenorhabdus spp., (4x10(5,) 4x10(6,) 4x10(7) cells/ml) were evaluated in the laboratory and in pot experiments to test their antagonistic effects on Fusarium oxysporum f.sp., lycopersici. All concentrations effectively inhibited its growth on agar plates. In soil under greenhouse conditions treatments with each bacterium at 4x10(7) cells/ml reduced the disease incidence of tomato by up to 40.38 and 47.54% respectively and there were significant increases of plant biomass by 198 and 211% respectively. The rhizosphere population of Fusarium oxysporum f.sp., lycopersici was reduced by 97%. The Xenorhabdus spp., was comparatively more effective than X. nematophila.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cells of the bacterial symbiont Xenorhabdus nematophila from the entomopathogenic nematode, Steinernema carpocapsae entered the pupae of Plutella xylostella after 15 minutes treatment with suspensions containing the bacterial cells. Secretions of Xenorhabdus nematophila, in either broth or water, were found lethal to the pupae of P. xylostella when applied in moist sand. The bacterial symbiont Xenorhabdus nematophila was found lethal to the pupae of greater wax moth (Galleria mellonella), beet armyworm (Spodoptera exigua), diamondback moth (Plutella xylostella) and black vine weevil (Otiorhynchus sulcatus) in the absence of the nematode vector and the cells of X. nematophila entered the haemocoele of the pupae.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bacterium from Pseudomonas putida from Steinernema abbasi and its metabolic secretions caused the mortality of the Galleria mellonella pupae. Experiments were conducted in sand and filter paper on time exposure, temperature, moisture, dose and time of penetration of bacterium in pupae and tested stored or dried toxic metabolites using G. mellonella pupae as a test target organism. Death of pupae was probably due to the toxic metabolites. Pseudomonas putida cells were recovered from the haemocoele when bacterial cells were applied to the G. mellonella pupae indicating that bacterial cells can enter the haemocoele in the absence of nematode vector. Penetration of bacterium was found rapidly after application on G. mellonella pupae. Pseudomonas putida or its toxic secretions can be used as a microbial control for insect control. The experimental results indicate that there is possibility of using P. putida and its toxic secretions as a biopesticide and can contribute in the development of new microbial and biological control against insect pests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Susceptibility of late instar vine weevil Otiorhynchus sulcatus larvae and pupae to four species entomopathogenic nematodes were tested. Bioassays on production and infectivity to larvae and pupae were compared for two steinernematids and two heterorhabditis such as Steinernema carpocapsae, S. feltiae, Heterorhabditis indica and H. bacteriophora. Nematodes production of all species was determined by the number infective juveniles (IJs) established in vine weevil larvae and pupae O. sulcatus using sand and filter paper bioassay. S. feltiae produced the maximum number in larvae and pupae at 20°C as compared to other nematodes but production of H. indica, was better at 25°C in larvae and pupae followed by H. bacteriophora, S. carpocapsae and Infectivity test of larvae and pupae was also done in sand media. Infective juveniles recovered from larvae and pupae when infected with S. feltiae produced maximum infective juveniles at 20°C temperatures than all other isolates. H. bacteriophora produced higher number of IJs in larvae and pupae than all other nematode isolates at 25°C. This paper indicates the application of nematodes with the knowledge of insect pest biology represents a possible new strategy for O. sulcatus larvae and pupae.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Entomopathogenic bacterium Pseudomonas putida from Steinernema abbasi and its metabolic secretions were lethal to the Galleria mellonella larvae. Different laboratory experiments on time interval, substrate, moisture, temperature, dose, penetration of cells, stored and dried metabolites were conducted in sand and filter paper bioassays. It was concluded that death was probably due to the toxic metabolites. This bacterium and its metabolites were found very effective at 30 degree C. Penetration of bacterium was rapid after application on G. mellonella larvae. P. putida cells were recovered from the haemocoele when suspensions containing bacterial cells were applied to the G. mellonella indicating that bacterial symbionts do have a free-living existence and can enter the haemocoele in the absence of nematode vector. Stored metabolite and dried metabolites were found persistent for long time. This bacterium or its toxic secretions can be used for insect control that can be important component of integrated pest management against different insect pests. P. putida and its secretions are suggested as the most appropriate suspension to apply against insect pest control program in tropical ecological regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Entomopathogenic nematodes, Steinernema carpocapsae, S. feltiae (Steinernematids) Heterorhabditis indica and H. bacteriophora (Heterorhabditids) were studied to control nymphs of desert locust Schistocerca gregaria. Results of all experiments showed a significant difference in mortality percentage among all isolates. All nematodes were found more effective when exposure time was increased up to 10 days. On the other hand, both Heterorhabditids caused maximum mortality as compared to Steinernematids at 30 degree C. When different moisture levels were tested in the sand arena, a medium level of moisture (1%) caused maximum insect mortality in all isolates. However, highest concentration of each isolate (200 IJs per ml) proved to be most appropriate for maximum insect death. Similarly, both Heterorhabditis nematodes when orally applied to insects killed maximum nymphs as compared to other two Steinernematids. A similar response was observed in infectivity test when maximum percentage of IJs of both isolates of Heterorhabditis successfully penetrated into the body of locust nymphs. This research suggests some useful basic findings in developing biocides with suitable virulent of entomopathogenic nematode for controlling nymphs of desert locust.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cells and cell-free solutions of the culture filtrate of the bacterial symbiont, Xenorhabdus nematophila taken from the entomopathogenic nematode Steinernema carpocapsae in aqueous broth suspensions were lethal to larvae of the diamondback moth Plutella xylostella. Their application on leaves of Chinese cabbage indicated that the cells can penetrate into the insects in the absence of the nematode vector. Cell-free solutions containing metabolites were also proved as effective as bacterial cells suspension. The application of aqueous suspensions of cells of X. nematophila or solutions containing its toxic metabolites to the leaves represents a possible new strategy for controlling insect pests on foliage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The entomopathogenic bacterium, Xenorhabdus nematophila was isolated from the hemolymph of Galleria mellonella infected with Steinernema carpocapsae. The bacterial cells and its metabolic secretions have been found lethal to the Galleria larvae. Toxic secretion in broth caused 95% mortality within 4 d of application whereas the bacterial cells caused 93% mortality after 6 d. When filter and sand substrates were compared, the later one was observed as appropriate. Similarly, bacterial cells and secretion in broth were more effective at 14% moisture and 25 °C temperature treatments. Maximum insect mortality (100%) was observed when bacterial concentration of 4×106 cells/ml was used. Similarly, maximum bacterial cells in broth (95%) were penetrated into the insect body within 2 h of their application. However, when stored bacterial toxic secretion was applied to the insects its efficacy declined. On the other hand, when the same toxic secretion was dried and then dissolved either in broth or water was proved to be effective. The present study showed that the bacterium, X. nematophila or its toxic secretion can be used as an important component of integrated pest management against Galleria.