9 resultados para ENTERIC NERVOUS-SYSTEM

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Bile acids (BAs) regulate cells by activating nuclear and membrane-bound receptors. G protein coupled bile acid receptor 1 (GpBAR1) is a membrane-bound G-protein-coupled receptor that can mediate the rapid, transcription-independent actions of BAs. Although BAs have well-known actions on motility and secretion, nothing is known about the localization and function of GpBAR1 in the gastrointestinal tract. METHODS: We generated an antibody to the C-terminus of human GpBAR1, and characterized the antibody by immunofluorescence and Western blotting of HEK293-GpBAR1-GFP cells. We localized GpBAR1 immunoreactivity (IR) and mRNA in the mouse intestine, and determined the mechanism by which BAs activate GpBAR1 to regulate intestinal motility. KEY RESULTS: The GpBAR1 antibody specifically detected GpBAR1-GFP at the plasma membrane of HEK293 cells, and interacted with proteins corresponding in mass to the GpBAR1-GFP fusion protein. GpBAR1-IR and mRNA were detected in enteric ganglia of the mouse stomach and small and large intestine, and in the muscularis externa and mucosa of the small intestine. Within the myenteric plexus of the intestine, GpBAR1-IR was localized to approximately 50% of all neurons and to >80% of inhibitory motor neurons and descending interneurons expressing nitric oxide synthase. Deoxycholic acid, a GpBAR1 agonist, caused a rapid and sustained inhibition of spontaneous phasic activity of isolated segments of ileum and colon by a neurogenic, cholinergic and nitrergic mechanism, and delayed gastrointestinal transit. CONCLUSIONS & INFERENCES: G protein coupled bile acid receptor 1 is unexpectedly expressed in enteric neurons. Bile acids activate GpBAR1 on inhibitory motor neurons to release nitric oxide and suppress motility, revealing a novel mechanism for the actions of BAs on intestinal motility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The COE/EBF gene family marks a subset of prospective neurons in the vertebrate central and peripheral. nervous system; including neurons deriving from some ectodermal placodes. Since placodes are often considered unique to vertebrates, we have characterised an amphioxus COE/EBF gene with the aim of using it as a marker to examine the timing and location of peripheral neuron differentiation. A single COE/EBF family member, AmphiCoe, was isolated from the amphioxus Branchiostoma floridae: AmphiCoe lies basal to the vertebrate COE/EBF genes in molecular phylogenetic analysis, suggesting that the duplications that formed the vertebrate COE/EBF family were specific to the vertebrate lineage. AmphiCoe is expressed in the central nervous system and in a small number of scattered ectodermal cells on the flanks of neurulae stage embryos. These cells become at least largely recessed beneath the ectoderm. Scanning electron microscopy was used to examine embryos in which the ectoderm had been partially peeled away. This revealed that these cells have neuronal morphology, and we infer that they are the precursors of epidermal primary sensory neurons. These characters lead us to suggest that differentiation of some ectodermal cells into sensory neurons with a tendency to sink beneath the embryonic surface represents a primitive feature that has become incorporated into placodes during vertebrate evolution. (C) 2004 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We compare the expression patterns in Ciona intestinalis of three members of the Pax gene family, CiPax3/7, CiPax6 and Cipax2/5/8. All three genes are expressed in restricted patterns in the developing central nervous system. At the tailbud stage, CiPax3/7 is present in three patches in the brain and along the posterior neural tube, CiPax6 throughout the anterior brain and along the posterior neural tube and CiPax2/5/8 in a restricted region of the posterior brain. Double in situ hybridisations were used to identify areas of overlap between the expression of different genes. This showed that CiPax3/7 overlaps with the boundaries of CiPax6 expression in the anterior brain, and with CiPax2/5/8 in the posterior brain. The overlap between CiPax3/7 and CiPax2/5/8 is unlike that described in the ascidian Halocynthia rorezti. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is now possible to directly link the human nervous system to a computer and thence onto the Internet. From an electronic and mental viewpoint this means that the Internet becomes an extension of the human nervous system (and vice versa). Such a connection on a regular or mass basis will have far reaching effects for society. In this article the authors discuss their own practical implant self-experimentation, especially insofar as it relates to extending the human nervous system. Trials involving an intercontinental link up are described. As well as technical aspects of the work, social, moral and ethical issues, as perceived by the authors, are weighed against potential technical gains. The authors also look at technical limitations inherent in the co-evolution of Internet implanted individuals as well as the future distribution of intelligence between human and machine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

G protein-coupled receptors (GPCRs) are expressed throughout the nervous system where they regulate multiple physiological processes, participate in neurological diseases, and are major targets for therapy. Given that many GPCRs respond to neurotransmitters and hormones that are present in the extracellular fluid and which do not readily cross the plasma membrane, receptor trafficking to and from the plasma membrane is a critically important determinant of cellular responsiveness. Moreover, trafficking of GPCRs throughout the endosomal system can initiate signaling events that are mechanistically and functionally distinct from those operating at the plasma membrane. This review discusses recent advances in the relationship between signaling and trafficking of GPCRs in the nervous system. It summarizes how receptor modifications influence trafficking, discusses mechanisms that regulate GPCR trafficking to and from the plasma membrane, reviews the relationship between trafficking and signaling, and considers the implications of GPCR trafficking to drug development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nuclear factor kappa B (NF-kappaB) is an inducible transcription factor present in neurons and glia. Recent genetic models identified a role for NF-kappaB in neuroprotection against various neurotoxins. Furthermore, genetic evidence for a role in learning and memory is now emerging. This review highlights our current understanding of neuronal NF-kappaB in response to synaptic transmission and summarizes potential physiological functions of NF-kappaB in the nervous system. This article contains a listing of NF-kappaB activators and inhibitors in the nervous system, furthermore specific target genes are discussed. Synaptic NF-kappaB activated by glutamate and Ca2+ will be presented in the context of retrograde signaling. A controversial role of NF-kappaB in neurodegenerative diseases will be discussed. A model is proposed explaining this paradox as deregulated physiological NF-kappaB activity, where novel results are integrated, showing that p65 could be turned from an activator to a repressor of anti-apoptotic genes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Wnt family of secreted signalling molecules controls a wide range of developmental processes in all metazoans. In this investigation we concentrate on the role that members of this family play during the development of (1) the somites and (2) the neural crest. (3) We also isolate a novel component of the Wnt signalling pathway called Naked cuticle and investigate the role that this protein may play in both of the previously mentioned developmental processes. (1) In higher vertebrates the paraxial mesoderm undergoes a mesenchymal-to-epithelial transformation to form segmentally organised structures called somites. Experiments have shown that signals originating from the ectoderm overlying the somites or from midline structures are required for the formation of the somites, but their identity has yet to be determined. Wnt6 is a good candidate as a somite epithelialisation factor from the ectoderm since it is expressed in this tissue. In this study we show that injection of Wnt6-producing cells beneath the ectoderm at the level of the segmental plate or lateral to the segmental plate leads to the formation of numerous small epithelial somites. We show that Wnts are indeed responsible for the epithelialisation of somites by applying Wnt antagonists which result in the segmental plate being unable to form somites. These results show that Wnt6, the only member of this family to be localised to the chick paraxial ectoderm, is able to regulate the development of epithelial somites and that cellular organisation is pivotal in the execution of the differentiation programmes. (2) The neural crest is a population of multipotent progenitor cells that arise from the neural ectoderm in all vertebrate embryos and form a multitude of derivatives including the peripheral sensory neurons, the enteric nervous system, Schwann cells, pigment cells and parts of the craniofacial skeleton. The induction of the neural crest relies on an ectodermally derived signal, but the identity of the molecule performing this role in amniotes is not known. Here we show that Wnt6, a protein expressed in the ectoderm, induces neural crest production. (3) The intracellular response to Wnt signalling depends on the choice of signalling cascade activated in the responding cell. Cells can activate either the canonical pathway that modulates gene expression to control cellular differentiation and proliferation, or the non-canonical pathway that controls cell polarity and movement (Pandur et al. 2002b). Recent work has identified the protein Naked cuticle as an intracellular switch promoting the non-canonical pathway at the expense of the canonical pathway. We have cloned chick Naked cuticle-1 (cNkd1) and demonstrate that it is expressed in a dynamic manner during early embryogenesis. We show that it is expressed in the somites and in particular regions where cells are undergoing movement. Lastly our study shows that the expression of cNkd1 is regulated by Wnt expression originating from the neural tube. This study provides evidence that non-canonical Wnt signalling plays a part in somite development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Calcitonin receptor-like receptor (CLR) and receptor activity modifying protein 1 (RAMP1) comprise a receptor for calcitonin gene related peptide (CGRP) and intermedin. Although CGRP is widely expressed in the nervous system, less is known about the localization of CLR and RAMP1. To localize these proteins, we raised antibodies to CLR and RAMP1. Antibodies specifically interacted with CLR and RAMP1 in HEK cells coexpressing rat CLR and RAMP1, determined by Western blotting and immunofluorescence. Fluorescent CGRP specifically bound to the surface of these cells and CGRP, CLR, and RAMP1 internalized into the same endosomes. CLR was prominently localized in nerve fibers of the myenteric and submucosal plexuses, muscularis externa and lamina propria of the gastrointestinal tract, and in the dorsal horn of the spinal cord of rats. CLR was detected at low levels in the soma of enteric, dorsal root ganglia (DRG), and spinal neurons. RAMP1 was also localized to enteric and DRG neurons and the dorsal horn. CLR and RAMP1 were detected in perivascular nerves and arterial smooth muscle. Nerve fibers containing CGRP and intermedin were closely associated with CLR fibers in the gastrointestinal tract and dorsal horn, and CGRP and CLR colocalized in DRG neurons. Thus, CLR and RAMP1 may mediate the effects of CGRP and intermedin in the nervous system. However, mRNA encoding RAMP2 and RAMP3 was also detected in the gastrointestinal tract, DRG, and dorsal horn, suggesting that CLR may associate with other RAMPs in these tissues to form a receptor for additional peptides such as adrenomedullin.