8 resultados para ENERGY RESOURCES

em CentAUR: Central Archive University of Reading - UK


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Rapid urbanisation in China has resulted in great demands for energy, resources and pressure on the environment. The progress in China's development is considered in the context of energy efficiency in the built environment, including policy, technology and implementation. The key research challenges and opportunities are identified for delivering a low carbon built environment. The barriers include the existing traditional sequential design process, the lack of integrated approaches, and insufficient socio-technical knowledge. A proposed conceptual systemic model of an integrated approach identifies research opportunities. The organisation of research activities should be initiated, operated, and managed in a collaborative way among policy makers, professionals, researchers and stakeholders. More emphasis is needed on integrating social, economic and environmental impacts in the short, medium and long terms. An ideal opportunity exists for China to develop its own expertise, not merely in a technical sense but in terms of vision and intellectual leadership in order to flourish in global collaborations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The domestic (residential) sector accounts for 30% of the world’s energy consumption hence plays a substantial role in energy management and CO2 emissions reduction efforts. Energy models have been generally developed to mitigate the impact of climate change and for the sustainable management and planning of energy resources. Although there are different models and model categories, they are generally categorised into top down and bottom up. Significantly, top down models are based on aggregated data while bottom up models are based on disaggregated data. These approaches create fundamental differences which have been the centre of debate since the 1970’s. These differences have led to noticeable discrepancies in results which have led to authors arguing that the models are of a more complementary than a substituting nature. As a result developing methods suggest that there is the need to integrate either the two models (bottom up − top down) or aspects that combine two bottom up models or an upgrade of top down models to compensate for the documented limitations. Diverse schools of thought argue in favour of these integrations – currently known as hybrid models. In this paper complexities of identifying country specific and/or generic domestic energy models and their applications in different countries have been critically reviewed. Predominantly from the review it is evident that most of these methods have been adapted and used in the ‘western world’ with practically no such applications in Africa.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This highlight discusses recent trends in the search for new high-efficiency thermoelectric materials. Thermoelectric materials offer considerable attractions in the pursuit of a more efficient use of existing energy resources, as they may be used to construct power-generation devices that allow useful electrical power to be extracted from otherwise waste heat. Here, we focus on the significant enhancements in thermoelectric performance that have been achieved through nanostructuring. The principal factor behind the improved performance appears to be increased phonon scattering at interfaces. This results in a substantial reduction in the lattice contribution to thermal conductivity, a low value of which is a key requirement for improved thermoelectric performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The People's Republic of China and its 1.3 billion people have experienced a rapid economic growth in the past two decades. China's urbanisation ratio rose from around 20% in the early 1980s to 45% in 2007 [China Urban Research Committee. Green building. Beijing: Chinese Construction Industrial Publish House; 2008. ISBN 978-7-112-09925-2.]. The large volume and rapid speed of building construction rarely have been seen in global development and cause substantial pressure on resources and the environment. Government policy makers and building professionals, including architects, building engineers, project managers and property developers, should play an important role in enhancing the planning, design, construction, operation and maintenance of the building energy efficiency process in forming the sustainable urban development. This paper addresses the emerging issues relating to building energy consumption and building energy efficiency due to the fast urbanisation development in China.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growing dependence on electricity for economic growth in all countries prompts the need to manage current resources for future sustainability. In today’s world, greater emphasis is placed on energy conservation for energy security and for the development of every economy. However, for some countries understanding the basic drivers to such achievements is farfetched. The research presented in this paper investigates the electricity generation and access potential for Botswana. In addition detailed documentation and 13 years energy consumption and generation trends are investigated. Using questionnaires and empirical studies the energy demand for the entire nation was estimated. From the research it was established that current energy generation trends account for 38- 39% of the country’s population with access to electricity. Considering the percentage rate of sector energy demand, the proposed total installed capacity of 1332 MW, would not meet the country's energy demand at 100% access. The likely consequence of the lack of adequate supply would cumulate to significant increase of imports and/or load shedding to meet demand.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Distributed generation plays a key role in reducing CO2 emissions and losses in transmission of power. However, due to the nature of renewable resources, distributed generation requires suitable control strategies to assure reliability and optimality for the grid. Multi-agent systems are perfect candidates for providing distributed control of distributed generation stations as well as providing reliability and flexibility for the grid integration. The proposed multi-agent energy management system consists of single-type agents who control one or more gird entities, which are represented as generic sub-agent elements. The agent applies one control algorithm across all elements and uses a cost function to evaluate the suitability of the element as a supplier. The behavior set by the agent's user defines which parameters of an element have greater weight in the cost function, which allows the user to specify the preference on suppliers dynamically. This study shows the ability of the multi-agent energy management system to select suppliers according to the selection behavior given by the user. The optimality of the supplier for the required demand is ensured by the cost function based on the parameters of the element.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wild bird feeding is popular in domestic gardens across the world. Nevertheless, there is surprisingly little empirical information on certain aspects of the activity and no year-round quantitative records of the amounts and nature of the different foods provided in individual gardens. We sought to characterise garden bird feeding in a large UK urban area in two ways. First, we conducted face-to-face questionnaires with a representative cross-section of residents. Just over half fed birds, the majority doing so year round and at least weekly. Second, a two-year study recorded all foodstuffs put out by households on every provisioning occasion. A median of 628 kcal/garden/day was given. Provisioning level was not significantly influenced by weather or season. Comparisons between the data sets revealed significantly less frequent feeding amongst these ‘keen’ feeders than the face-to-face questionnaire respondents, suggesting that one-off questionnaires may overestimate provisioning frequency. Assuming 100% uptake, the median provisioning level equates to sufficient supplementary resources across the UK to support 196 million individuals of a hypothetical average garden-feeding bird species (based on 10 common UK garden-feeding birds’ energy requirements). Taking the lowest provisioning level recorded (101 kcal/day) as a conservative measure, 31 million of these average individuals could theoretically be supported.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is necessary to minimize the environmental impact and utilize natural resources in a sustainable and efficient manner in the early design stage of developing an environmentally-conscious design for a heating, ventilating and air-conditioning system. Energy supply options play a significant role in the total environmental load of heating, ventilating and air-conditioning systems. To assess the environmental impact of different energy options, a new method based on Emergy Analysis is proposed. Emergy Accounting, was first developed and widely used in the area of ecological engineering, but this is the first time it has been used in building service engineering. The environmental impacts due to the energy options are divided into four categories under the Emergy Framework: the depletion of natural resources, the greenhouse effect (carbon dioxide equivalents), the chemical rain effect (sulphur dioxide equivalents), and anthropogenic heat release. The depletion of non-renewable natural resources is indicated by the Environmental Load Ratio, and the environmental carrying capacity is developed to represent the environmental service to dilute the pollutants and anthropogenic heat released. This Emergy evaluation method provides a new way to integrate different environmental impacts under the same framework and thus facilitates better system choices. A case study of six different kinds of energy options consisting of renewable and non-renewable energy was performed by using Emergy Theory, and thus their relative environmental impacts were compared. The results show that the method of electricity generation in energy sources, especially for electricity-powered systems, is the most important factor to determine their overall environmental performance. The direct-fired lithium-bromide absorption type consumes more non-renewable energy, and contributes more to the urban heat island effect compared with other options having the same electricity supply. Using Emergy Analysis, designers and clients can make better-informed, environmentally-conscious selections of heating, ventilating and air-conditioning systems.