13 resultados para ELECTROSPUN POLYACRYLONITRILE

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use a combination of microscopy, x-ray scattering and neutron scattering to show how structure develops in micro and nano-size polymer fibres prepared by electrospinning. The technique has been applied to a range of different polymers, an amorphous system (polystyrene), a crystallisable polymer (poly-epsilon-caprolactone), a composite systems (polyethylene oxide or poly vinyl alcohol containing polypyrrole) and consider the possibility of self assembly (gelatin).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gelatin fibres have been successfully electrospun from water by heating a gelatin solution above the sol-gel transition temperature, and allowing cooling in a controlled environment as the fibres are produced. The development of structure with in these fibres is monitored using wide angle x-ray scattering, in this way the presence of the triple helix structure, which provides the physical cross-linkages in the gel could be probed. There is clear evidence that these structures are obtained in gelatin electrospun from aqueous solutions. In contrast fibres electrospun from a solution of gelatin in glacial acetic acid, showed no evidence of the triple helix structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrospinning is a technique employed to produce nanoscale to microscale sized fibres by the application of a high voltage to a spinneret containing a polymer solution. Here we examine how small angle neutron scattering data can be modelled to analyse the polymer chain conformation. We prepared 1:1 blends of deuterated and hydrogenated atactic-polystyrene fibres from solutions in N, N-Dimethylformamide and Methyl Ethyl Ketone. The fibres themselves often contain pores or voiding within the internal structure on the length scales that can interfere with scattering experiments. A model to fit the scattering data in order to obtain values for the radius of gyration of the polymer molecules within the fibres has been developed, that includes in the scattering from the voids. Using this model we find that the radius of gyration is 20% larger than in the bulk state and the chains are slightly extended parallel to the fibre axis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Small angle neutron scattering techniques were used to quantify the size and shape of the chain conformation in electrospun fibres of atactic polystyrene prepared from solutions in methyl ethyl ketone. Aligned arrays of fibres were collected onto a rotating collector with tangential velocity varying between 0 ms-1 and approximately 15 ms-1. The measured radii of gyration of the polystyrene chains were found to be slightly higher than that expected for samples prepared from solutions in the concentrated regime. The ratio of the radius of gyration parallel and perpendicular to the chain axis was found to be approximately 1.05 in contrast to the substantial macroscopic shape transformation intrinsic to electrospinning. When the tangential velocity of the rotating collector was greater than the flight velocity of the fibres (ca. 4 ms-1), a further extension of the polymer chains was observed with a ratio of the radii of gyration increasing to 1.20 at the highest collector speeds. It is proposed that the heterogeneous processes involved, particularly solvent evaporation and the formation of a polymer skin during electrospinning play a significant role in determining the level of molecular anisotropy in the fibres.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrospinning of urethane based low molecular weight polymers differing only in the nature of the hydrogen bonding end-groups has been investigated. For the end-groups with the lowest binding constants at maximum solubility only droplets, are produced at the electrode; in contrast, increasing the binding constant of the end-group results in electrospun fibres being produced. The properties of the fibres produced are subject to changes in solvent, concentration and temperature. Typical diameters for these fibres were found to be some 10 s of μm, rather than the sub-micron dimensions often produced in electrospinning systems. Such diameters are related to the high initial concentrations required; this also may influence the rate of solvent removal and preferential surface solidification which feature in these examples. A simple theoretical model is used to relate the association constant to the molecular weight required for fibre formation; significantly lower levels of association are required for higher molecular weight macromonomers compared to smaller molecular systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrospinning was used to generate polymer nanofibres from blends of poly-vinyl cinnamate (PVCN) and a cholesteric silicone polymer. Only blends that contained at least 40 % of PVCN produced fibres. Both differential scanning calorimetry and electron dispersion spectroscopy data indicate that the samples are miscible over a wide temperature interval. The variation of fibre diameter with concentration is nonlinear with a well-defined minimum corresponding to an 80 % PVCN blend. The fibres are birefringent with Kerr constants similar to that of cholesteric liquid crystals. Although not significant, the Kerr constant increases with increasing silicone polymer concentration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have succeeded in the preparation of electrospun fibers of polystyrene incorporating a metallo-organic polymer of [Fe (II) (4-octadecyl-1,2,4-triazole)3(ClO4)2]n. The obtained fibers have diameters in the range 2–4 µm and show the characteristic spin-crossover transition associated with the metallo-organic polymer. The structure of both, polystyrene and the metallo-organic polymer, in the fibers was also studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyethylene oxide solution containing multi-walled carbon nanotubes have been electrospun onto a rotating collector to produce highly aligned arrays of electrospun nanofibers ranging in diameters from (200 – 360) nanometres. The addition of a surfactant (Triton X-100)is highly effective in dispersing carbon nanotube within an aqueous solution of polyethylene oxide and the resulting mixture can be electrospun without excessive clumping to produce nanofibers containing high loadings of nanotubes; in this case up to 5% wt thereby providing an effective route to electrically conductive nanofibres.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrospun fibres based on polypyrrole have been prepared. The incorporation of preformed polypyrrole into fibres electrospun from a carrier polymer can only be achieved when materials are prepared with particulates smaller than the cross-section of the fibre; even so there are some problems, with the substantial loss of material from the electrode tip. As an alternative approach, soluble polypyrroles can be prepared but these are not of sufficient viscosity to prepare electrospun fibres, once again a carrier polymer must be employed. More effective loadings are gained by the process of coating the outer surface of a pre-spun fibre; in this way electrospun fibres coated with polypyrrole can be prepared. This approach has been adapted to produce silver coated polymer fibres by the use of copolymers of styrene and 3-vinyl benzaldehyde.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrospinning is a method used to produce nanoscale to microscale sized polymer fibres. In this study we electrospin 1:1 blends of deuterated and hydrogenated atactic-Polystyrene from N,N-Dimethylformamide for small angle neutron scattering experiments in order to analyse the chain conformation in the electrospun fibres. Small angle neutron scattering was carried out on randomly orientated fibre mats obtained using applied voltages of 10kV-15kV and needle tip to collector distances of 20cm and 30cm. Fibre diameters varied from 3mm - 20mm. Neutron scattering data from fibre samples were compared with bulk samples of the same polymer blend. The scattering data indicates that there are pores and nanovoiding present in the fibres; this was confirmed by scanning electron microscopy. A model that combines the scattering from the pores and the labelled polymer chains was used to extract values for the radius of gyration. The radius of gyration in the fibres is found to vary little with the applied voltage, but varies with the initial solution concentration and fibre diameter. The values for the radius of gyration in the fibres are broadly equivalent to that of the bulk state.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrospinning is a method used to produce nanoscale to microscale sized polymer fibres. In this study we electrospin 1:1 blends of deuterated and hydrogenated atactic- Polystyrene from N,N-Dimethylformamide for small angle neutron scattering experiments in order to analyse the chain conformation in the electrospun fibres. Small angle neutron scattering was carried out on randomly orientated fibre mats obtained using applied voltages of 10kV-15kV and needle tip to collector distances of 20cm and 30cm. Fibre diameters varied from 3μm – 20μm. Neutron scattering data from fibre samples were compared with bulk samples of the same polymer blend. The scattering data indicates that there are pores and nanovoiding present in the fibres; this was confirmed by scanning electron microscopy. A model that combines the scattering from the pores and the labelled polymer chains was used to extract values for the radius of gyration. The radius of gyration in the fibres is found to vary little with the applied voltage, but varies with the initial solution concentration and fibre diameter. The values for the radius of gyration in the fibres are broadly equivalent to that of the bulk state.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We explore the influence of a rotating collector on the internal structure of poly(ε-caprolactone) fibres electrospun from a solution in dichloroethane. We find that above a threshold collector speed, the mean fibre diameter reduces as the speed increases and the fibres are further extended. Small-angle and wide-angle X-ray scattering techniques show a preferred orientation of the lamellar crystals normal to the fibre axis which increases with collector speed to a maximum and then reduces. We have separated out the processes of fibre alignment on the collector and the orientation of crystals within the fibres. There are several stages to this behaviour which correspond to the situations (a) where the collector speed is slower than the fibre spinning rate, (b) the fibre is mechanically extended by the rotating collector and (c) where the deformation leads to fibre fracture. The mechanical deformation leads to a development of preferred orientation with extension which is similar to the prediction of the pseudo-affine deformation model and suggests that the deformation takes place during the spinning process after the crystals have formed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PLLA is a thermoplastic biopolymer and can be used in industrial applications for medical and filtration applications. The brittleness of PLLA is attributed to slow crystallization rates and its glass transition temperature (Tg) is high (60 °C); for this reason, its applications are limited. The orientation, morphology, and crystal structure of the electrospun fibers was investigated by SEM, POM, DSC, FTIR, XRD, and SAXS. Combining with additives leads to a large decrease of fiber diameter, viscosity, and changes of fiber morphology and crystal structure compared to pure PLLA. DSC showed that the Tg of PLLA decreased about 15 °C and there was no change in relaxation enthalpy by the addition of plasticizer. FT-IR indicate a strong interaction between PLLA and additives; a new band appears in the PLLA blend at 1,756 cm−1 at room temperature as a crystalline band without any annealing. In addition, WAXD indicated that the intensities of the two peaks at (200/110) and (203) increased for the blend at room temperature without any annealing in comparison with PLLA; this means that PHB crystallizes in the amorphous region of PLLA. The POM experiments agree with the results from DSC, FTIR, and WAXS measurements, confirming that adding PHB results in an increase in the number of nuclei with much smaller spherulites and enhances the crystallization behavior of this material, thereby improving its potential for applications.