18 resultados para ELECTRONIC STATES

em CentAUR: Central Archive University of Reading - UK


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The triatomic spin-rovibronic variational code RVIB3 has been extended to include the effect of two uncoupled electrons, for both (3)Sigma(-) and (3)Pi (Renner-Teller) electronic states. The spin-orbital-rotational kinetic energy is included in the usual way, via terms (J+L+S). The phenomenological terms AL.S and lambda 2/3(3S(z)(2)) are introduced to reproduce the 3 spin-orbit and spin-spin splittings, respectively. Calculations are performed to evaluate the spin-rovibronic energy levels of CCO (X) over tilde (3) Sigma(-) and CCO (A) over tilde (3) Pi for which the Born-Oppenheimer potentials are derived from high-accuracy ab initio calculations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Analytic functions have been obtained to represent the potential energy surfaces of C3 and HCN in their ground electronic states. These functions closely reproduce the available data on the energy, geometry, and force constants in all stable conformations, as well as data on the various dissociation products, and ab initio calculations of the energy at other conformations. The form of the resulting surfaces are portrayed in various ways and discussed briefly.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The theory of dipole-allowed absorption intensities in triatomic molecules is presented for systems with three close-lying electronic states of doublet multiplicity. Its derivation is within the framework of a recently developed variational method [CARTER, S., HANDY, N. C., PUZZARINI, C., TARRONI, R., and PALMIERI, P., 2000, Molec. Phys., 98,1967]. The method has been applied to the calculation of the infrared absorption spectrum of the C2H radical and its deuterated isotopomer for energies up to 10000 cm(-1) above the ground state, using highly accurate ab initio diabatic potential energy and dipole moment surfaces. The calculated spectra agree very well with those recorded experimentally in a neon matrix [FORNEY, D., JACOX, M. E., and THOMPSON, W. E., 1995, J. molee. Spectrosc., 170, 178] and assignments in the high energy region of the IR spectra are proposed for the first time.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The first three electronic states (1(2)A', 2(2)A', 1(2)A '') of the C2Br radical, correlating at linear geometries with (2)Sigma(+) and (2)Pi states, have been studied ab initio, using Multi Reference Configuration Interaction techniques. The electronic ground state is found to have a bent equilibrium geometry, R-CC = 1.2621 angstrom, R-CBr = 1.7967 angstrom, < CCBr 156.1 degrees, with a very low barrier to linearity. Similarly to the valence isoelectronic radicals C2F and C2Cl, this anomalous behaviour is attributed to a strong three-state non-adiabatic electronic interaction. The Sigma, Pi(1/2), Pi(3/2) vibronic energy levels and their absolute infrared absorption intensities at a temperature of 5K have been calculated for the (CCBr)-C-12-C-12-Br-79 isotopomer, to an upper limit of 2000 cm(-1), using ab initio diabatic potential energy and dipole moment surfaces and a recently developed variational method.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An experimental technique based on a scheme of vibrationally mediated photodissociation has been developed and applied to the spectroscopic study of highly excited vibrational states in HCN, with energies between 29 000 and 30 000 cm(-1). The technique consists of four sequential steps: in the first one, a high power laser is used to vibrationally excite the sample to an intermediate state, typically (0,0,4), the nu(3) mode being approximately equivalent to the C-H stretching vibration. Then a second laser is used to search for transitions between this intermediate state and highly vibrationally excited states. When one of these transitions is found, HCN molecules are transferred to a highly excited vibrational state. Third, a ultraviolet laser photodissociates the highly excited molecules to produce H and CN radicals in its A (2)Pi electronic state. Finally, a fourth laser (probe) detects the presence of the CN(A) photofragments by means of an A-->B-->X laser induced fluorescence scheme. The spectra obtained with this technique, consisting of several rotationally resolved vibrational bands, have been analyzed. The positions and rotational parameters of the states observed are presented and compared with the results of a state-of-the-art variational calculation. (C) 2004 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Point defects in metal oxides such as TiO2 are key to their applications in numerous technologies. The investigation of thermally induced nonstoichiometry in TiO2 is complicated by the difficulties in preparing and determining a desired degree of nonstoichiometry. We study controlled self-doping of TiO2 by adsorption of 1/8 and 1/16 monolayer Ti at the (110) surface using a combination of experimental and computational approaches to unravel the details of the adsorption process and the oxidation state of Ti. Upon adsorption of Ti, x-ray and ultraviolet photoemission spectroscopy (XPS and UPS) show formation of reduced Ti. Comparison of pure density functional theory (DFT) with experiment shows that pure DFT provides an inconsistent description of the electronic structure. To surmount this difficulty, we apply DFT corrected for on-site Coulomb interaction (DFT+U) to describe reduced Ti ions. The optimal value of U is 3 eV, determined from comparison of the computed Ti 3d electronic density of states with the UPS data. DFT+U and UPS show the appearance of a Ti 3d adsorbate-induced state at 1.3 eV above the valence band and 1.0 eV below the conduction band. The computations show that the adsorbed Ti atom is oxidized to Ti2+ and a fivefold coordinated surface Ti atom is reduced to Ti3+, while the remaining electron is distributed among other surface Ti atoms. The UPS data are best fitted with reduced Ti2+ and Ti3+ ions. These results demonstrate that the complexity of doped metal oxides is best understood with a combination of experiment and appropriate computations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The complexes [Ru(1-C=C-1,10-C2B8H9)(dppe)Cp*] (3a), [Ru(1-C C-1,12-C2B10H11)(dppe)-Cp*] (3b), [{Ru(dppe)Cp*}(2){mu-1,10-(C C)(2)-1,10-C2B8H8}] (4a) and [{Ru(dppe)Cp*}(2){mu-1,12-(C C)2- 1,12-C2B10-H-10}] (4b), which form a representative series of mono- and bimetallic acetylide complexes featuring 10- and 12-vertex carboranes embedded within the dethynyl bridging ligand, have been prepared and structurally characterized. In addition, these compounds have been examined spectroscopically (UV-is-NIR, IR) in all accessible redox states. The significant separation of the two, one-electron anodic waves observed in the cyclic voltammograms of the bimetallic complexes 4a and 4b is largely independent of the nature of the electrolyte and is attributed to stabilization of the intermediate redox products [4a](+) and [4b](+) through interactions between the metal centers across a distance of ca. 12.5 angstrom. The mono-oxidized bimetallic complexes (4a](+) and [4b](+) exhibit spectroscopic properties consistent with a description of these species in terms of valence-localized (class II) mixed-valence compounds, including a unique low-energy electronic absorption band, attributed to an, IVCT-type transition that tails into the IR region. DFT calculations with model systems [4a-H](+) and [4b-H](+) featuring simplified ligand sets reproduce the observed spectroscopic data and localized electronic structures for the mixed-valence cations [4a](+) and [4b](+).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mutual influence of surface geometry (e.g. lattice parameters, morphology) and electronic structure is discussed for Cu-Ni bimetallic (111) surfaces. It is found that on flat surfaces the electronic d-states of the adlayer experience very little influence from the substrate electronic structure which is due to their large separation in binding energies and the close match of Cu and Ni lattice constants. Using carbon monoxide and benzene as probe molecules, it is found that in most cases the reactivity of Cu or Ni adlayers is very similar to the corresponding (111) single crystal surfaces. Exceptions are the adsorption of CO on submonolayers of Cu on Ni(111) and the dissociation of benzene on Ni/Cu(111) which is very different from Ni(111). These differences are related to geometric factors influencing the adsorption on these surfaces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article we present for the first time accurate density functional theory (DFT) and time-dependent (TD) DFT data for a series of electronically unsaturated five-coordinate complexes [Mn(CO)(3)(L-2)](-), where L-2 stands for a chelating strong pi-donor ligand represented by catecholate, dithiolate, amidothiolate, reduced alpha-diimine (1,4-dialkyl-1,4-diazabutadiene (R-DAB), 2,2'-bipyridine) and reduced 2,2'-biphosphinine types. The single-crystal X-ray structure of the unusual compound [Na(BPY)][Mn(CO)(3)(BPY)]center dot Et2O and the electronic absorption spectrum of the anion [Mn(CO)(3)(BPY)](-) are new in the literature. The nature of the bidentate ligand determines the bonding in the complexes, which varies between two limiting forms: from completely pi-delocalized diamagnetic {(CO)(3)Mn-L-2}(-) for L-2 = alpha-diimine or biphosphinine, to largely valence-trapped {(CO)(3)Mn-1-L-2(2-)}(-) for L-2(2-) = catecholate, where the formal oxidation states of Mn and L-2 can be assigned. The variable degree of the pi-delocalization in the Mn(L-2) chelate ring is indicated by experimental resonance Raman spectra of [Mn(CO)(3)(L-2)](-) (L-2=3,5-di-tBu-catecholate and iPr-DAB), where accurate assignments of the diagnostically important Raman bands have been aided by vibrational analysis. The L-2 = catecholate type of complexes is known to react with Lewis bases (CO substitution, formation of six-coordinate adducts) while the strongly pi-delocalized complexes are inert. The five-coordinate complexes adopt usually a distorted square pyramidal geometry in the solid state, even though transitions to a trigonal bipyramid are also not rare. The experimental structural data and the corresponding DFT-computed values of bond lengths and angles are in a very good agreement. TD-DFT calculations of electronic absorption spectra of the studied Mn complexes and the strongly pi-delocalized reference compound [Fe(CO)(3)(Me-DAB)] have reproduced qualitatively well the experimental spectra. Analyses of the computed electronic transitions in the visible spectroscopic region show that the lowest-energy absorption band always contains a dominant (in some cases almost exclusive) contribution from a pi(HOMO) -> pi*(LUMO) transition within the MnL2 metallacycle. The character of this optical excitation depends strongly on the composition of the frontier orbitals, varying from a partial L-2 -> Mn charge transfer (LMCT) through a fully delocalized pi(MnL2) -> pi*(MnL2) situation to a mixed (CO)Mn -> L-2 charge transfer (LLCT/MLCT). The latter character is most apparent in the case of the reference complex [Fe(CO)(3)(Me-DAB)]. The higher-lying, usually strongly mixed electronic transitions in the visible absorption region originate in the three lower-lying occupied orbitals, HOMO - 1 to HOMO - 3, with significant metal-d contributions. Assignment of these optical excitations to electronic transitions of a specific type is difficult. A partial LLCT/MLCT character is encountered most frequently. The electronic absorption spectra become more complex when the chelating ligand L-2, such as 2,2'-bipyridine, features two or more closely spaced low-lying empty pi* orbitals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The syntheses and spectroscopic characterization of two 1,2,4-triazole-based oxovanadium(V) complexes are reported: 1(-)[VO(2)L1](-) and 2 [(VOL2)(2)(OMe)(2)] (where H(2)L1 = 3-(2'-hydroxyphenyl)-5-(pyridin-2"-yl)-H-1-1,2,4-triazole, H3L2 = bis-3,5-(2'-hydroxyphenyl)-1H-1,2,4-triazole). The ligand environment (N,N,O vs O,N,O) is found to have a profound influence on the properties and reactivity of the complexes formed. The presence of the triazolato ligand allows for pH tuning of the spectroscopic and electrochemical properties, as well as the interaction and stability of the complexes in the presence of hydrogen peroxide. The vanadium(IV) oxidation states were generated electrochemically and characterized by UV-vis and EPR spectroscopies, For 2, under acidic conditions, rapid exchange of the methoxide ligands with solvent [in particular, in the vanadium(IV) redox state] was observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Combined picosecond transient absorption and time-resolved infrared studies were performed, aimed at characterising low-lying excited states of the cluster [Os-3(CO)(10)(s-cis-L)] (L= cyclohexa-1,3-diene, 1) and monitoring the formation of its photoproducts. Theoretical (DFT and TD-DFT) calculations on the closely related cluster with L=buta-1,3-diene (2') have revealed that the low-lying electronic transitions of these [Os-3(CO)(10)(s-cis-1,3-diene)] clusters have a predominant sigma(core)pi*(CO) character. From the lowest sigmapi* excited state, cluster 1 undergoes fast Os-Os(1,3-diene) bond cleavage (tau=3.3 ps) resulting in the formation of a coordinatively unsaturated primary photoproduct (1a) with a single CO bridge. A new insight into the structure of the transient has been obtained by DFT calculations. The cleaved Os-Os(1,3-diene) bond is bridged by the donor 1,3-diene ligand, compensating for the electron deficiency at the neighbouring Os centre. Because of the unequal distribution of the electron density in transient la, a second CO bridge is formed in 20 ps in the photoproduct [Os-3(CO)(8)(mu-CO)(2)- (cyclohexa-1,3-diene)] (1b). The latter compound, absorbing strongly around 630 nm, mainly regenerates the parent cluster with a lifetime of about 100 ns in hexane. Its structure, as suggested by the DFT calculations, again contains the 1,3-diene ligand coordinated in a bridging fashion. Photoproduct 1b can therefore be assigned as a high-energy coordination isomer of the parent cluster with all Os-Os bonds bridged.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The lowest allowed electronic transition of fac-[Re(Cl)(CO)(3)(bopy)(2)] (bopy = 4-benzoylpyridine) has a Re --> bopy MLCT character, as revealed by UV-vis and stationary resonance Raman spectroscopy. Accordingly, the lowest-lying, long-lived, excited state is Re --> bopy (MLCT)-M-3. Electronic depopulation of the Re(CO)(3) unit and population of a bopy pi* orbital upon excitation are evident by the upward shift of v(Cequivalent toO) vibrations and a downward shift of the ketone v(C=O) vibration, respectively, seen in picosecond time-resolved IR spectra. Moreover, reduction of a single bopy ligand in the (MLCT)-M-3 excited state is indicated by time-resolved visible and resonance Raman (TR3) spectra that show features typical of bopy(.-). In contrast, the lowest allowed electronic transition and lowest-lying excited state of a new complex fac-[Re(bopy)(CO)(3)(bpy)](+) (bpy = 2,2'-bipyridine) have been identified as Re --> bpy MLCT with no involvement of the bopy ligand, despite the fact that the first reduction of this complex is bopy-localized, as was proven spectroelectrochemically. This is a rare case in which the localizations of the lowest MLCT excitation and the first reduction are different. (MLCT)-M-3 excited states of both fac-[Re(Cl)(CO)(3)(bopy)(2)] and fac-[Re(bopy)(CO)(3)(bpy)](+) are initially formed vibrationally hot. Their relaxation is manifested by picosecond dynamic shifts of v(Cequivalent toO) IR bands. The X-ray structure of fac-[Re(bopy)(CO)(3)(bpy)](PF6CH3CN)-C-. has been determined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

UV–Vis absorption spectra of one-electron reduction products and 3MLCT excited states of [ReICl(CO)3- (N,N)] (N,N = 2,20-bipyridine, bpy; 1,10-phenanthroline, phen) have been measured by low-temperature spectroelectrochemistry and UV–Vis transient absorption spectroscopy, respectively, and assigned by open-shell TD-DFT calculations. The characters of the electronic transitions are visualized and analyzed using electron density redistribution maps. It follows that reduced and excited states can be approximately formulated as [ReICl(CO)3(N,Nÿ)]ÿ and ⁄[ReIICl(CO)3(N,Nÿ)], respectively. UV–Vis spectra of the reduced complexes are dominated by IL transitions, plus weaker MLCT contributions. Excited-state spectra show an intense band in the UV region of 50% IL origin mixed with LMCT (bpy, 373 nm) or MLCT (phen, 307 nm) excitations. Because of the significant IL contribution, this spectral feature is akin to the principal IL band of the anions. In contrast, the excited-state visible spectral pattern arises from predominantly LMCT transitions, any resemblance with the reduced-state visible spectra being coincidental. The Re complexes studied herein are representatives of a broad class of metal a-diimines, for which similar spectroscopic behavior can be expected.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vibrational circular dichroism is a powerful technique to study the stereochemistry of chiral molecules, but often suffers from small signal intensities. Electrochemical modulation of the energies of the electronically excited state manifold is now demonstrated to lead to an order of magnitude enhancement of the differential absorption. Quantum-chemical calculations show that increased mixing between ground and excited states is at the origin of this amplification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A comprehensive study of the complexes A4[U(NCS)8] (A = Cs, Et4N, nBu4N) and A3[UO2(NCS)5] (A = Cs, Et4N) is described, with the crystal structures of [nBu4N]4[U(NCS)8]·2MeCN and Cs3[UO2(NCS)5]·O0.5 reported. The magnetic properties of square antiprismatic Cs4[U(NCS)8] and cubic [Et4N]4[U(NCS)8] have been probed by SQUID magnetometry. The geometry has an important impact on the low-temperature magnetic moments: at 2 K, μeff = 1.21 μB and 0.53 μB, respectively. Electronic absorption and photoluminescence spectra of the uranium(IV) compounds have been measured. The redox chemistry of [Et4N]4[U(NCS)8] has been explored using IR and UV–vis spectroelectrochemical methods. Reversible 1-electron oxidation of one of the coordinated thiocyanate ligands occurs at +0.22 V vs Fc/Fc+, followed by an irreversible oxidation to form dithiocyanogen (NCS)2 which upon back reduction regenerates thiocyanate anions coordinating to UO22+. NBO calculations agree with the experimental spectra, suggesting that the initial electron loss of [U(NCS)8]4– is delocalized over all NCS– ligands. Reduction of the uranyl(VI) complex [Et4N]3[UO2(NCS)5] to uranyl(V) is accompanied by immediate disproportionation and has only been studied by DFT methods. The bonding in [An(NCS)8]4– (An = Th, U) and [UO2(NCS)5]3– has been explored by a combination of DFT and QTAIM analysis, and the U–N bonds are predominantly ionic, with the uranyl(V) species more ionic that the uranyl(VI) ion. Additionally, the U(IV)–NCS ion is more ionic than what was found for U(IV)–Cl complexes.