54 resultados para ELECTRICAL DRIVES
em CentAUR: Central Archive University of Reading - UK
Resumo:
The hazards associated with high voltage three phase inverters and the rotating shafts of large electrical machines have resulted in most of the engineering courses covering these topics to be predominantly theoretical. This paper describes a set of purpose built, low voltage and low cost teaching equipment which allows the "hands on" instruction of three phase inverters and rotating machines. By using low voltages, the student can experiment freely with the motors and inverter and can access all of the current and voltage waveforms, which until now could only be studied in text books or observed as part of laboratory demonstrations. Both the motor and the inverter designs are optimized for teaching purposes cost around $25 and can be made with minimal effort.
Resumo:
The hazards associated with high-voltage three-phase inverters and high-powered large electrical machines have resulted in most of the engineering courses covering three-phase machines and drives theoretically. This paper describes a set of purpose-built, low-voltage, and low-cost teaching equipment that allows the hands-on instruction of three-phase inverters and rotating machines. The motivation for moving towards a system running at low voltages is that the students can safely experiment freely with the motors and inverter. The students can also access all of the current and voltage waveforms, which until now could only be studied in textbooks or observed as part of laboratory demonstrations. Both the motor and the inverter designs are for teaching purposes and require minimal effort and cost
Resumo:
The hazards associated with high voltage three phase inverters ond the rotating sha@s of large electrical machines have resulted in most of the engineering courses covering these topics to be predominantly theoretical. This paper describes a set of purpose built, low voltage and low cost teaching equipment which allows the “hands on I’ instruction of three phase inverters and rotating machines. By using low voltages, the student can experiment freely with the motors and inverter and can access all of the current and voltage waveforms, which until now could only be studied in text books or observed as part of laboratory demonstrations. Both the motor and the inverter designs are optimized for teaching purposes, cost around $25 and can be made with minimal effort.
Resumo:
The hazards associated with high-voltage three-phase inverters and high-powered large electrical machines have resulted in most of the engineering courses covering three-phase machines and drives theoretically. This paper describes a set of purpose-built, low-voltage, and low-cost teaching equipment that allows the hands-on instruction of three-phase inverters and rotating machines. The motivation for moving towards a system running at low voltages is that the students can safely experiment freely with the motors and inverter. The students can also access all of the current and voltage waveforms, which until now could only be studied in textbooks or observed as part of laboratory demonstrations. Both the motor and the inverter designs are for teaching purposes and require minimal effort and cost.
Resumo:
Relations between the apparent electrical conductivity of the soil (ECa) and top- and sub-soil physical properties were examined for two arable fields in southern England (Crowmarsh Battle Farms and the Yattendon Estate). The spatial variation of ECa and the soil properties was explored geostatistically. The variogram ranges showed that ECa varied on a similar spatial scale to many of the soil physical properties in both fields. Several features in the map of kriged predictions of ECa were also evident in maps of the soil properties. In addition, the correlation coefficients showed a strong relation between ECa and several soil properties. A moving correlation analysis enabled differences in the relations between ECa and the soil properties to be examined within the fields. The results indicated that relations were inconsistent; they were stronger in some areas than others. A regression of ECa on the principal component scores of the leading components for both fields showed that the first two components accounted for a large proportion of the variance in ECa, whereas the others accounted for little or none. For Crowmarsh topsoil sand and clay, loss on ignition and volumetric water measured in the autumn had large correlations on the first component, and for Yattendon they were large for topsoil sand and clay, and autumn and spring volumetric water. The cross-variograms suggested strong coregionalization between ECa and several soil physical properties; in particular subsoil sand and silt at Crowmarsh, and subsoil sand and clay at Yattendon. The structural correlations from the linear model of coregionalization confirmed the strength of the relations between ECa and the subsoil properties. Nevertheless, no one property was consistently important for both fields. Although a map of ECa can indicate the general patterns of spatial variation in the soil, it is not a substitute for information on soil properties obtained by sampling and analysing the soil. Nevertheless, it could be used to guide further sampling. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Cross-hole anisotropic electrical and seismic tomograms of fractured metamorphic rock have been obtained at a test site where extensive hydrological data were available. A strong correlation between electrical resistivity anisotropy and seismic compressional-wave velocity anisotropy has been observed. Analysis of core samples from the site reveal that the shale-rich rocks have fabric-related average velocity anisotropy of between 10% and 30%. The cross-hole seismic data are consistent with these values, indicating that observed anisotropy might be principally due to the inherent rock fabric rather than to the aligned sets of open fractures. One region with velocity anisotropy greater than 30% has been modelled as aligned open fractures within an anisotropic rock matrix and this model is consistent with available fracture density and hydraulic transmissivity data from the boreholes and the cross-hole resistivity tomography data. However, in general the study highlights the uncertainties that can arise, due to the relative influence of rock fabric and fluid-filled fractures, when using geophysical techniques for hydrological investigations.
Resumo:
Seventeen-month-old infants were presented with pairs of images, in silence or with the non-directive auditory stimulus 'look!'. The images had been chosen so that one image depicted an item whose name was known to the infant, and the other image depicted an image whose name was not known to the infant. Infants looked longer at images for which they had names than at images for which they did not have names, despite the absence of any referential input. The experiment controlled for the familiarity of the objects depicted: in each trial, image pairs presented to infants had previously been judged by caregivers to be of roughly equal familiarity. From a theoretical perspective, the results indicate that objects with names are of intrinsic interest to the infant. The possible causal direction for this linkage is discussed and it is concluded that the results are consistent with Whorfian linguistic determinism, although other construals are possible. From a methodological perspective, the results have implications for the use of preferential looking as an index of early word comprehension.
Resumo:
A vertical conduction current flows in the atmosphere as a result of the global atmospheric electric circuit. The current at the surface consists of the conduction current and a locally generated displacement current, which are often approximately equal in magnitude. A method of separating the two currents using two collectors of different geometry is investigated. The picoammeters connected to the collectors have a RC time constant of approximately 3 s, permitting the investigation of higher frequency air-earth current changes than previously achieved. The displacement current component of the air-earth current derived from the instrument agrees with calculations using simultaneous data from a co-located fast response electric field mill. The mean value of the nondisplacement current measured over 9 h was 1.76 +/- 0.002 pA m(-2). (c) 2006 American Institute of Physics.