9 resultados para ECONOMIC STATISTICS.

em CentAUR: Central Archive University of Reading - UK


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Real-time estimates of output gaps and inflation gaps differ from the values that are obtained using data available long after the event. Part of the problem is that the data on which the real-time estimates are based is subsequently revised. We show that vector-autoregressive models of data vintages provide forecasts of post-revision values of future observations and of already-released observations capable of improving estimates of output and inflation gaps in real time. Our findings indicate that annual revisions to output and inflation data are in part predictable based on their past vintages.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many macroeconomic series, such as U.S. real output growth, are sampled quarterly, although potentially useful predictors are often observed at a higher frequency. We look at whether a mixed data-frequency sampling (MIDAS) approach can improve forecasts of output growth. The MIDAS specification used in the comparison uses a novel way of including an autoregressive term. We find that the use of monthly data on the current quarter leads to significant improvement in forecasting current and next quarter output growth, and that MIDAS is an effective way to exploit monthly data compared with alternative methods.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tests for business cycle asymmetries are developed for Markov-switching autoregressive models. The tests of deepness, steepness, and sharpness are Wald statistics, which have standard asymptotics. For the standard two-regime model of expansions and contractions, deepness is shown to imply sharpness (and vice versa), whereas the process is always nonsteep. Two and three-state models of U.S. GNP growth are used to illustrate the approach, along with models of U.S. investment and consumption growth. The robustness of the tests to model misspecification, and the effects of regime-dependent heteroscedasticity, are investigated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Survey respondents who make point predictions and histogram forecasts of macro-variables reveal both how uncertain they believe the future to be, ex ante, as well as their ex post performance. Macroeconomic forecasters tend to be overconfident at horizons of a year or more, but overestimate (i.e., are underconfident regarding) the uncertainty surrounding their predictions at short horizons. Ex ante uncertainty remains at a high level compared to the ex post measure as the forecast horizon shortens. There is little evidence of a link between individuals’ ex post forecast accuracy and their ex ante subjective assessments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Model-based estimates of future uncertainty are generally based on the in-sample fit of the model, as when Box-Jenkins prediction intervals are calculated. However, this approach will generate biased uncertainty estimates in real time when there are data revisions. A simple remedy is suggested, and used to generate more accurate prediction intervals for 25 macroeconomic variables, in line with the theory. A simulation study based on an empirically-estimated model of data revisions for US output growth is used to investigate small-sample properties.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effects of data uncertainty on real-time decision-making can be reduced by predicting early revisions to US GDP growth. We show that survey forecasts efficiently anticipate the first-revised estimate of GDP, but that forecasting models incorporating monthly economic indicators and daily equity returns provide superior forecasts of the second-revised estimate. We consider the implications of these findings for analyses of the impact of surprises in GDP revision announcements on equity markets, and for analyses of the impact of anticipated future revisions on announcement-day returns.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article explains the basis for a theory of economic forecasting developed over the past decade by the authors. The research has resulted in numerous articles in academic journals, two monographs, Forecasting Economic Time Series, 1998, Cambridge University Press, and Forecasting Nonstationary Economic Time Series, 1999, MIT Press, and three edited volumes, Understanding Economic Forecasts, 2001, MIT Press, A Companion to Economic Forecasting, 2002, Blackwells, and the Oxford Bulletin of Economics and Statistics, 2005. The aim here is to provide an accessible, non-technical, account of the main ideas. The interested reader is referred to the monographs for derivations, simulation evidence, and further empirical illustrations, which in turn reference the original articles and related material, and provide bibliographic perspective.