2 resultados para ECHELLE SPECTROGRAPH
em CentAUR: Central Archive University of Reading - UK
Resumo:
The ability of four operational weather forecast models [ECMWF, Action de Recherche Petite Echelle Grande Echelle model (ARPEGE), Regional Atmospheric Climate Model (RACMO), and Met Office] to generate a cloud at the right location and time (the cloud frequency of occurrence) is assessed in the present paper using a two-year time series of observations collected by profiling ground-based active remote sensors (cloud radar and lidar) located at three different sites in western Europe (Cabauw. Netherlands; Chilbolton, United Kingdom; and Palaiseau, France). Particular attention is given to potential biases that may arise from instrumentation differences (especially sensitivity) from one site to another and intermittent sampling. In a second step the statistical properties of the cloud variables involved in most advanced cloud schemes of numerical weather forecast models (ice water content and cloud fraction) are characterized and compared with their counterparts in the models. The two years of observations are first considered as a whole in order to evaluate the accuracy of the statistical representation of the cloud variables in each model. It is shown that all models tend to produce too many high-level clouds, with too-high cloud fraction and ice water content. The midlevel and low-level cloud occurrence is also generally overestimated, with too-low cloud fraction but a correct ice water content. The dataset is then divided into seasons to evaluate the potential of the models to generate different cloud situations in response to different large-scale forcings. Strong variations in cloud occurrence are found in the observations from one season to the same season the following year as well as in the seasonal cycle. Overall, the model biases observed using the whole dataset are still found at seasonal scale, but the models generally manage to well reproduce the observed seasonal variations in cloud occurrence. Overall, models do not generate the same cloud fraction distributions and these distributions do not agree with the observations. Another general conclusion is that the use of continuous ground-based radar and lidar observations is definitely a powerful tool for evaluating model cloud schemes and for a responsive assessment of the benefit achieved by changing or tuning a model cloud
Observations of the eruption of the Sarychev volcano and simulations using the HadGEM2 climate model
Resumo:
In June 2009 the Sarychev volcano located in the Kuril Islands to the northeast of Japan erupted explosively, injecting ash and an estimated 1.2 ± 0.2 Tg of sulfur dioxide into the upper troposphere and lower stratosphere, making it arguably one of the 10 largest stratospheric injections in the last 50 years. During the period immediately after the eruption, we show that the sulfur dioxide (SO2) cloud was clearly detected by retrievals developed for the Infrared Atmospheric Sounding Interferometer (IASI) satellite instrument and that the resultant stratospheric sulfate aerosol was detected by the Optical Spectrograph and Infrared Imaging System (OSIRIS) limb sounder and CALIPSO lidar. Additional surface‐based instrumentation allows assessment of the impact of the eruption on the stratospheric aerosol optical depth. We use a nudged version of the HadGEM2 climate model to investigate how well this state‐of‐the‐science climate model can replicate the distributions of SO2 and sulfate aerosol. The model simulations and OSIRIS measurements suggest that in the Northern Hemisphere the stratospheric aerosol optical depth was enhanced by around a factor of 3 (0.01 at 550 nm), with resultant impacts upon the radiation budget. The simulations indicate that, in the Northern Hemisphere for July 2009, the magnitude of the mean radiative impact from the volcanic aerosols is more than 60% of the direct radiative forcing of all anthropogenic aerosols put together. While the cooling induced by the eruption will likely not be detectable in the observational record, the combination of modeling and measurements would provide an ideal framework for simulating future larger volcanic eruptions.