3 resultados para Dynamic climatology

em CentAUR: Central Archive University of Reading - UK


Relevância:

60.00% 60.00%

Publicador:

Resumo:

While state-of-the-art models of Earth's climate system have improved tremendously over the last 20 years, nontrivial structural flaws still hinder their ability to forecast the decadal dynamics of the Earth system realistically. Contrasting the skill of these models not only with each other but also with empirical models can reveal the space and time scales on which simulation models exploit their physical basis effectively and quantify their ability to add information to operational forecasts. The skill of decadal probabilistic hindcasts for annual global-mean and regional-mean temperatures from the EU Ensemble-Based Predictions of Climate Changes and Their Impacts (ENSEMBLES) project is contrasted with several empirical models. Both the ENSEMBLES models and a “dynamic climatology” empirical model show probabilistic skill above that of a static climatology for global-mean temperature. The dynamic climatology model, however, often outperforms the ENSEMBLES models. The fact that empirical models display skill similar to that of today's state-of-the-art simulation models suggests that empirical forecasts can improve decadal forecasts for climate services, just as in weather, medium-range, and seasonal forecasting. It is suggested that the direct comparison of simulation models with empirical models becomes a regular component of large model forecast evaluations. Doing so would clarify the extent to which state-of-the-art simulation models provide information beyond that available from simpler empirical models and clarify current limitations in using simulation forecasting for decision support. Ultimately, the skill of simulation models based on physical principles is expected to surpass that of empirical models in a changing climate; their direct comparison provides information on progress toward that goal, which is not available in model–model intercomparisons.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The evaluation of forecast performance plays a central role both in the interpretation and use of forecast systems and in their development. Different evaluation measures (scores) are available, often quantifying different characteristics of forecast performance. The properties of several proper scores for probabilistic forecast evaluation are contrasted and then used to interpret decadal probability hindcasts of global mean temperature. The Continuous Ranked Probability Score (CRPS), Proper Linear (PL) score, and IJ Good’s logarithmic score (also referred to as Ignorance) are compared; although information from all three may be useful, the logarithmic score has an immediate interpretation and is not insensitive to forecast busts. Neither CRPS nor PL is local; this is shown to produce counter intuitive evaluations by CRPS. Benchmark forecasts from empirical models like Dynamic Climatology place the scores in context. Comparing scores for forecast systems based on physical models (in this case HadCM3, from the CMIP5 decadal archive) against such benchmarks is more informative than internal comparison systems based on similar physical simulation models with each other. It is shown that a forecast system based on HadCM3 out performs Dynamic Climatology in decadal global mean temperature hindcasts; Dynamic Climatology previously outperformed a forecast system based upon HadGEM2 and reasons for these results are suggested. Forecasts of aggregate data (5-year means of global mean temperature) are, of course, narrower than forecasts of annual averages due to the suppression of variance; while the average “distance” between the forecasts and a target may be expected to decrease, little if any discernible improvement in probabilistic skill is achieved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ECHO is a new global coupled ocean-atmosphere general circulation model (GCM), consisting of the Hamburg version of the European Centre atmospheric GCM (ECHAM) and the Hamburg Primitive Equation ocean GCM (HOPE). We performed a 20-year integration with ECHO. Climate drift is significant, but typical annual mean errors in sea surface temperature (SST) do not exceed 2° in the open oceans. Near the boundaries, however, SST errors are considerably larger. The coupled model simulates an irregular ENSO cycle in the tropical Pacific, with spatial patterns similar to those observed. The variability, however, is somewhat weaker relative to observations. ECHO also simulates significant interannual variability in mid-latitudes. Consistent with observations, variability over the North Pacific can be partly attributed to remote forcing from the tropics. In contrast, the interannual variability over the North Atlantic appears to be generated locally.