3 resultados para Dynamic Electricity Tariffs
em CentAUR: Central Archive University of Reading - UK
Resumo:
Dynamic electricity pricing can produce efficiency gains in the electricity sector and help achieve energy policy goals such as increasing electric system reliability and supporting renewable energy deployment. Retail electric companies can offer dynamic pricing to residential electricity customers via smart meter-enabled tariffs that proxy the cost to procure electricity on the wholesale market. Current investments in the smart metering necessary to implement dynamic tariffs show policy makers’ resolve for enabling responsive demand and realizing its benefits. However, despite these benefits and the potential bill savings these tariffs can offer, adoption among residential customers remains at low levels. Using a choice experiment approach, this paper seeks to determine whether disclosing the environmental and system benefits of dynamic tariffs to residential customers can increase adoption. Although sampling and design issues preclude wide generalization, we found that our environmentally conscious respondents reduced their required discount to switch to dynamic tariffs around 10% in response to higher awareness of environmental and system benefits. The perception that shifting usage is easy to do also had a significant impact, indicating the potential importance of enabling technology. Perhaps the targeted communication strategy employed by this study is one way to increase adoption and achieve policy goals.
Resumo:
One of the most common Demand Side Management programs consists of Time-of-Use (TOU) tariffs, where consumers are charged differently depending on the time of the day when they make use of energy services. This paper assesses the impacts of TOU tariffs on a dataset of residential users from the Province of Trento in Northern Italy in terms of changes in electricity demand, price savings, peak load shifting and peak electricity demand at substation level. Findings highlight that TOU tariffs bring about higher average electricity consumption and lower payments by consumers. A significant level of load shifting takes place for morning peaks. However, issues with evening peaks are not resolved. Finally, TOU tariffs lead to increases in electricity demand for substations at peak time.
Resumo:
For decades regulators in the energy sector have focused on facilitating the maximisation of energy supply in order to meet demand through liberalisation and removal of market barriers. The debate on climate change has emphasised a new type of risk in the balance between energy demand and supply: excessively high energy demand brings about significantly negative environmental and economic impacts. This is because if a vast number of users is consuming electricity at the same time, energy suppliers have to activate dirty old power plants with higher greenhouse gas emissions and higher system costs. The creation of a Europe-wide electricity market requires a systematic investigation into the risk of aggregate peak demand. This paper draws on the e-Living Time-Use Survey database to assess the risk of aggregate peak residential electricity demand for European energy markets. Findings highlight in which countries and for what activities the risk of aggregate peak demand is greater. The discussion highlights which approaches energy regulators have started considering to convince users about the risks of consuming too much energy during peak times. These include ‘nudging’ approaches such as the roll-out of smart meters, incentives for shifting the timing of energy consumption, differentiated time-of-use tariffs, regulatory financial incentives and consumption data sharing at the community level.