41 resultados para Dwarf Galaxy Fornax Distribution Function Action Based
em CentAUR: Central Archive University of Reading - UK
Resumo:
A stochastic parameterization scheme for deep convection is described, suitable for use in both climate and NWP models. Theoretical arguments and the results of cloud-resolving models, are discussed in order to motivate the form of the scheme. In the deterministic limit, it tends to a spectrum of entraining/detraining plumes and is similar to other current parameterizations. The stochastic variability describes the local fluctuations about a large-scale equilibrium state. Plumes are drawn at random from a probability distribution function (pdf) that defines the chance of finding a plume of given cloud-base mass flux within each model grid box. The normalization of the pdf is given by the ensemble-mean mass flux, and this is computed with a CAPE closure method. The characteristics of each plume produced are determined using an adaptation of the plume model from the Kain-Fritsch parameterization. Initial tests in the single column version of the Unified Model verify that the scheme is effective in producing the desired distributions of convective variability without adversely affecting the mean state.
Resumo:
We present an analysis of a cusp ion step, observed by the Defense Meteorological Satellite Program (DMSP) F10 spacecraft, between two poleward moving events of enhanced ionospheric electron temperature, observed by the European Incoherent Scatter (EISCAT) radar. From the ions detected by the satellite, the variation of the reconnection rate is computed for assumed distances along the open-closed field line separatrix from the satellite to the X line, do. Comparison with the onset times of the associated ionospheric events allows this distance to be estimated, but with an uncertainty due to the determination of the low-energy cutoff of the ion velocity distribution function, ƒ(ν). Nevertheless, the reconnection site is shown to be on the dayside magnetopause, consistent with the reconnection model of the cusp during southward interplanetary magnetic field (IMF). Analysis of the time series of distribution function at constant energies, ƒ(ts), shows that the best estimate of the distance do is 14.5±2 RE. This is consistent with various magnetopause observations of the signatures of reconnection for southward IMF. The ion precipitation is used to reconstruct the field-parallel part of the Cowley D ion distribution function injected into the open low-latitude boundary layer in the vicinity of the X line. From this reconstruction, the field-aligned component of the magnetosheath flow is found to be only −55±65 km s−1 near the X line, which means either that the reconnection X line is near the stagnation region at the nose of the magnetosphere, or that it is closely aligned with the magnetosheath flow streamline which is orthogonal to the magnetosheath field, or both. In addition, the sheath Alfvén speed at the X line is found to be 220±45 km s−1, and the speed with which newly opened field lines are ejected from the X line is 165±30 km s−1. We show that the inferred magnetic field, plasma density, and temperature of the sheath near the X line are consistent with a near-subsolar reconnection site and confirm that the magnetosheath field makes a large angle (>58°) with the X line.
Resumo:
The use of high-energy X-ray total scattering coupled with pair distribution function analysis produces unique structural fingerprints from amorphous and nanostructured phases of the pharmaceuticals carbamazepine and indomethacin. The advantages of such facility-based experiments over laboratory-based ones are discussed and the technique is illustrated with the characterisation of a melt-quenched sample of carbamazepine as a nanocrystalline (4.5 nm domain diameter) version of form III.
Resumo:
We consider the comparison of two formulations in terms of average bioequivalence using the 2 × 2 cross-over design. In a bioequivalence study, the primary outcome is a pharmacokinetic measure, such as the area under the plasma concentration by time curve, which is usually assumed to have a lognormal distribution. The criterion typically used for claiming bioequivalence is that the 90% confidence interval for the ratio of the means should lie within the interval (0.80, 1.25), or equivalently the 90% confidence interval for the differences in the means on the natural log scale should be within the interval (-0.2231, 0.2231). We compare the gold standard method for calculation of the sample size based on the non-central t distribution with those based on the central t and normal distributions. In practice, the differences between the various approaches are likely to be small. Further approximations to the power function are sometimes used to simplify the calculations. These approximations should be used with caution, because the sample size required for a desirable level of power might be under- or overestimated compared to the gold standard method. However, in some situations the approximate methods produce very similar sample sizes to the gold standard method. Copyright © 2005 John Wiley & Sons, Ltd.
Resumo:
The alignment of model amyloid peptide YYKLVFFC is investigated in bulk and at a solid surface using a range of spectroscopic methods employing polarized radiation. The peptide is based on a core sequence of the amyloid beta (A beta) peptide, KLVFF. The attached tyrosine and cysteine units are exploited to yield information on alignment and possible formation of disulfide or dityrosine links. Polarized Raman spectroscopy on aligned stalks provides information on tyrosine orientation, which complements data from linear dichroism (LD) on aqueous solutions subjected to shear in a Couette cell. LD provides a detailed picture of alignment of peptide strands and aromatic residues and was also used to probe the kinetics of self-assembly. This suggests initial association of phenylalanine residues, followed by subsequent registry of strands and orientation of tyrosine residues. X-ray diffraction (XRD) data from aligned stalks is used to extract orientational order parameters from the 0.48 nm reflection in the cross-beta pattern, from which an orientational distribution function is obtained. X-ray diffraction on solutions subject to capillary flow confirmed orientation in situ at the level of the cross-beta pattern. The information on fibril and tyrosine orientation from polarized Raman spectroscopy is compared with results from NEXAFS experiments on samples prepared as films on silicon. This indicates fibrils are aligned parallel to the surface, with phenyl ring normals perpendicular to the surface. Possible disulfide bridging leading to peptide dimer formation was excluded by Raman spectroscopy, whereas dityrosine formation was probed by fluorescence experiments and was found not to occur except under alkaline conditions. Congo red binding was found not to influence the cross-beta XRD pattern.
Resumo:
This paper explores a new technique to calculate and plot the distribution of instantaneous transmit envelope power of OFDMA and SC-FDMA signals from the equation of Probability Density Function (PDF) solved numerically. The Complementary Cumulative Distribution Function (CCDF) of Instantaneous Power to Average Power Ratio (IPAPR) is computed from the structure of the transmit system matrix. This helps intuitively understand the distribution of output signal power if the structure of the transmit system matrix and the constellation used are known. The distribution obtained for OFDMA signal matches complex normal distribution. The results indicate why the CCDF of IPAPR in case of SC-FDMA is better than OFDMA for a given constellation. Finally, with this method it is shown again that cyclic prefixed DS-CDMA system is one case with optimum IPAPR. The insight that this technique provides may be useful in designing area optimised digital and power efficient analogue modules.
Resumo:
Data are presented from the EISCAT (European Incoherent Scatter (Facility)) CP-3-E experiment which show large increases in the auroral zone convection velocities (>2 km s−1) over a wide range of latitudes. These are larger than the estimated neutral thermal speed and allow a study of the plasma in a nonthermal state over a range of observing angles. Spectra are presented which show a well-defined central peak, consistent with an ion velocity distribution function which significantly departs from a Maxwellian form. As the aspect angle decreases, the central peak becomes less obvious. Simulated spectra, derived using theoretical expressions for the O+ ion velocity distribution function based on the generalized relaxation collision model, are compared with the observations and show good first-order, qualitative agreement. It is shown that ion temperatures derived from the observations, with the assumption of a Maxwellian distribution function, are an overestimate of the true ion temperature at large aspect angles and an underestimate at low aspect angles. The theoretical distribution functions have been included in the “standard” incoherent scatter radar analysis procedure, and attempts have been made to derive realistic ionospheric parameters from nonthermal plasma observations. If the expressions for the distribution function are extended to include mixed ion composition, a significant improvement is found in fitting some of the observed spectra, and estimates of the ion composition can be made. The non-Maxwellian analysis of the data revealed that the spectral shape distortion parameter, D*, was significantly higher in this case for molecular ions than for atomic ions in a thin height slab roughly 40 km thick. This would seem unlikely if the main molecular ions present were NO+. We therefore suggest that N2+ formed a significant proportion of the molecular ions present during these observations.
Resumo:
A novel statistic for local wave amplitude of the 500-hPa geopotential height field is introduced. The statistic uses a Hilbert transform to define a longitudinal wave envelope and dynamical latitude weighting to define the latitudes of interest. Here it is used to detect the existence, or otherwise, of multimodality in its distribution function. The empirical distribution function for the 1960-2000 period is close to a Weibull distribution with shape parameters between 2 and 3. There is substantial interdecadal variability but no apparent local multimodality or bimodality. The zonally averaged wave amplitude, akin to the more usual wave amplitude index, is close to being normally distributed. This is consistent with the central limit theorem, which applies to the construction of the wave amplitude index. For the period 1960-70 it is found that there is apparent bimodality in this index. However, the different amplitudes are realized at different longitudes, so there is no bimodality at any single longitude. As a corollary, it is found that many commonly used statistics to detect multimodality in atmospheric fields potentially satisfy the assumptions underlying the central limit theorem and therefore can only show approximately normal distributions. The author concludes that these techniques may therefore be suboptimal to detect any multimodality.
Resumo:
This report presents key findings from a small-scale pilot research project that explored the experiences and priorities of young people caring for their siblings in sibling-headed households affected by AIDS in Tanzania and Uganda. Qualitative and participatory research was conducted with 33 young people living in sibling-headed households and 39 NGO staff and community members in rural and urban areas of Tanzania and Uganda. The report analyses the ways that young people manage transitions to caring for their younger siblings following their parents’ death and the impacts of caring on their family relations, education, emotional wellbeing and health, social lives and their transitions to adulthood. The study highlights gendered- and age-related differences in the nature and extent of young people’s care work and discusses young people’s needs and priorities for action, based on the views of young people, NGO staff and community members. Meeting the basic needs of young people living in sibling-headed households, listening to young people’s views, fostering peer support and relationships of trust with supportive adults, raising awareness and advocacy emerge as key priorities to safeguard the rights of children and young people living in sibling-headed households and challenge the stigma and marginalisation they sometimes face.
Resumo:
The orientational ordering of the nematic phase of a polyethylene glycol (PEG)-peptide block copolymer in aqueous solution is probed by small-angle neutron scattering (SANS), with the sample subjected to steady shear in a Couette cell. The PEG-peptide conjugate forms fibrils that behave as semiflexible rodlike chains. The orientational order parameters (P) over bar (2) and (P) over bar (4) are obtained by modeling the data using a series expansion approach to the form factor of uniform cylinders. The method used is independent of assumptions on the form of the singlet orientational distribution function. Good agreement with the anisotropic two-dimensional SANS patterns is obtained. The results show shear alignment starting at very low shear rates, and the orientational order parameters reach a plateau at higher shear rates with a pseudologarithmic dependence on shear rate. The most probable distribution functions correspond to fibrils parallel to the flow direction under shear, but a sample at rest shows a bimodal distribution with some of the rodlike peptide fibrils oriented perpendicular to the flow direction.
Resumo:
A generalized or tunable-kernel model is proposed for probability density function estimation based on an orthogonal forward regression procedure. Each stage of the density estimation process determines a tunable kernel, namely, its center vector and diagonal covariance matrix, by minimizing a leave-one-out test criterion. The kernel mixing weights of the constructed sparse density estimate are finally updated using the multiplicative nonnegative quadratic programming algorithm to ensure the nonnegative and unity constraints, and this weight-updating process additionally has the desired ability to further reduce the model size. The proposed tunable-kernel model has advantages, in terms of model generalization capability and model sparsity, over the standard fixed-kernel model that restricts kernel centers to the training data points and employs a single common kernel variance for every kernel. On the other hand, it does not optimize all the model parameters together and thus avoids the problems of high-dimensional ill-conditioned nonlinear optimization associated with the conventional finite mixture model. Several examples are included to demonstrate the ability of the proposed novel tunable-kernel model to effectively construct a very compact density estimate accurately.
Resumo:
Neurofuzzy modelling systems combine fuzzy logic with quantitative artificial neural networks via a concept of fuzzification by using a fuzzy membership function usually based on B-splines and algebraic operators for inference, etc. The paper introduces a neurofuzzy model construction algorithm using Bezier-Bernstein polynomial functions as basis functions. The new network maintains most of the properties of the B-spline expansion based neurofuzzy system, such as the non-negativity of the basis functions, and unity of support but with the additional advantages of structural parsimony and Delaunay input space partitioning, avoiding the inherent computational problems of lattice networks. This new modelling network is based on the idea that an input vector can be mapped into barycentric co-ordinates with respect to a set of predetermined knots as vertices of a polygon (a set of tiled Delaunay triangles) over the input space. The network is expressed as the Bezier-Bernstein polynomial function of barycentric co-ordinates of the input vector. An inverse de Casteljau procedure using backpropagation is developed to obtain the input vector's barycentric co-ordinates that form the basis functions. Extension of the Bezier-Bernstein neurofuzzy algorithm to n-dimensional inputs is discussed followed by numerical examples to demonstrate the effectiveness of this new data based modelling approach.
Resumo:
This paper compares a number of different extreme value models for determining the value at risk (VaR) of three LIFFE futures contracts. A semi-nonparametric approach is also proposed, where the tail events are modeled using the generalised Pareto distribution, and normal market conditions are captured by the empirical distribution function. The value at risk estimates from this approach are compared with those of standard nonparametric extreme value tail estimation approaches, with a small sample bias-corrected extreme value approach, and with those calculated from bootstrapping the unconditional density and bootstrapping from a GARCH(1,1) model. The results indicate that, for a holdout sample, the proposed semi-nonparametric extreme value approach yields superior results to other methods, but the small sample tail index technique is also accurate.
Resumo:
This paper investigates the frequency of extreme events for three LIFFE futures contracts for the calculation of minimum capital risk requirements (MCRRs). We propose a semiparametric approach where the tails are modelled by the Generalized Pareto Distribution and smaller risks are captured by the empirical distribution function. We compare the capital requirements form this approach with those calculated from the unconditional density and from a conditional density - a GARCH(1,1) model. Our primary finding is that both in-sample and for a hold-out sample, our extreme value approach yields superior results than either of the other two models which do not explicitly model the tails of the return distribution. Since the use of these internal models will be permitted under the EC-CAD II, they could be widely adopted in the near future for determining capital adequacies. Hence, close scrutiny of competing models is required to avoid a potentially costly misallocation capital resources while at the same time ensuring the safety of the financial system.