36 resultados para Durham Cathedral.
em CentAUR: Central Archive University of Reading - UK
Resumo:
At various times during the Quaternary, north-eastern England was a zone of confluence between dynamic ice lobes sourced from the Pennines, northern Scotland, the Cheviots, and Scandinavia. The region thus has some of the most complex exposures of Middle to Late Pleistocene sediments in Britain, with both interglacial and glacial sediments deposited in terrestrial and marine settings. We investigated sedimentary sequences exposed on the coastline of County Durham at Warren House Gill, and present a new model of British and Fennoscandian Ice Sheet interaction in the North Sea Basin during the Middle Pleistocene. The stratigraphy at Warren House Gill consists of a lower diamicton and upper estuarine sediments, both part of the Warren House Formation. They are separated from the overlying Weichselian Blackhall and Horden tills by a substantial unconformity. The lower diamicton of the Warren House Formation is re-interpreted here as an MIS 8 to 12 glaciomarine deposit containing ice-rafted lithics from north-eastern Scotland and the northeast North Sea, and is renamed the ‘Ash Gill Member’. It is dated by lithological comparison to the Easington Raised Beach, Middle Pleistocene Amino Acid Racemisation values, and indirectly by optically stimulated luminescence. The overlying shallow subaqueous sediments were deposited in an estuarine environment by suspension settling and bottom current activity. They are named the ‘Whitesides Member’, and form the uppermost member of the Warren House Formation. During glaciation, ice-rafted material was deposited in a marine embayment. There is no evidence of a grounded, onshore Scandinavian ice sheet in County Durham during MIS 6, which has long been held as the accepted stratigraphy. This has major implications for the currently accepted British Quaternary Stratigraphy. Combined with recent work on the Middle Pleistocene North Sea Drift from Norfolk, which is now suggested to have been deposited by a Scottish ice sheet, the presence of a Scandinavian ice sheet in eastern England at any time during the Quaternary is becoming increasingly doubtful.
'Context' in Durham, E., 'Symbols of power: The Silchester Bronze Eagle and eagles in Roman Britain'
Resumo:
Those who study Roman art and religion in Britain will know that there are a relatively small number of pieces in stone and bronze which are regularly used to illustrate arguments on Romanization, provincialism and identity. However, while these objects become familiar through such use, they are, in fact, often little studied as pieces in their own right and the only description of their appearance and context are some fifty or more years old. Re-excavation of the context from which the Silchester eagle was recovered has raised questions about the date of its deposition, as well as its origin and use, and indeed the nature of its deposition at Silchester. This paper examines the figurine in detail, the role of the eagle at Silchester and explores the significance of the eagle more widely in Roman Britain.
Resumo:
Would a research assistant - who can search for ideas related to those you are working on, network with others (but only share the things you have chosen to share), doesn’t need coffee and who might even, one day, appear to be conscious - help you get your work done? Would it help your students learn? There is a body of work showing that digital learning assistants can be a benefit to learners. It has been suggested that adaptive, caring, agents are more beneficial. Would a conscious agent be more caring, more adaptive, and better able to deal with changes in its learning partner’s life? Allow the system to try to dynamically model the user, so that it can make predictions about what is needed next, and how effective a particular intervention will be. Now, given that the system is essentially doing the same things as the user, why don’t we design the system so that it can try to model itself in the same way? This should mimic a primitive self-awareness. People develop their personalities, their identities, through interacting with others. It takes years for a human to develop a full sense of self. Nobody should expect a prototypical conscious computer system to be able to develop any faster than that. How can we provide a computer system with enough social contact to enable it to learn about itself and others? We can make it part of a network. Not just chatting with other computers about computer ‘stuff’, but involved in real human activity. Exposed to ‘raw meaning’ – the developing folksonomies coming out of the learning activities of humans, whether they are traditional students or lifelong learners (a term which should encompass everyone). Humans have complex psyches, comprised of multiple strands of identity which reflect as different roles in the communities of which they are part – so why not design our system the same way? With multiple internal modes of operation, each capable of being reflected onto the outside world in the form of roles – as a mentor, a research assistant, maybe even as a friend. But in order to be able to work with a human for long enough to be able to have a chance of developing the sort of rich behaviours we associate with people, the system needs to be able to function in a practical and helpful role. Unfortunately, it is unlikely to get a free ride from many people (other than its developer!) – so it needs to be able to perform a useful role, and do so securely, respecting the privacy of its partner. Can we create a system which learns to be more human whilst helping people learn?
Resumo:
Different systems, different purposes – but how do they compare as learning environments? We undertook a survey of students at the University, asking whether they learned from their use of the systems, whether they made contact with other students through them, and how often they used them. Although it was a small scale survey, the results are quite enlightening and quite surprising. Blackboard is populated with learning material, has all the students on a module signed up to it, a safe environment (in terms of Acceptable Use and some degree of staff monitoring) and provides privacy within the learning group (plus lecturer and relevant support staff). Facebook, on the other hand, has no learning material, only some of the students using the system, and on the face of it, it has the opportunity for slips in privacy and potential bullying because the Acceptable Use policy is more lax than an institutional one, and breaches must be dealt with on an exception basis, when reported. So why do more students find people on their courses through Facebook than Blackboard? And why are up to 50% of students reporting that they have learned from using Facebook? Interviews indicate that students in subjects which use seminars are using Facebook to facilitate working groups – they can set up private groups which give them privacy to discuss ideas in an environment which perceived as safer than Blackboard can provide. No staff interference, unless they choose to invite them in, and the opportunity to select who in the class can engage. The other striking finding is the difference in use between the genders. Males are using blackboard more frequently than females, whilst the reverse is true for Facebook. Interviews suggest that this may have something to do with needing to access lecture notes… Overall, though, it appears that there is little relationship between the time spent engaging with Blackboard and reports that students have learned from it. Because Blackboard is our central repository for notes, any contact is likely to result in some learning. Facebook, however, shows a clear relationship between frequency of use and perception of learning – and our students post frequently to Facebook. Whilst much of this is probably trivia and social chit chat, the educational elements of it are, de facto, contructivist in nature. Further questions need to be answered - Is the reason the students learn from Facebook because they are creating content which others will see and comment on? Is it because they can engage in a dialogue, without the risk of interruption by others?
Resumo:
Stable isotopes get personal in this analysis of burials at a medieval cathedral. Compared with the local meat-eating rank and file, those people identified as bishops consumed significantly more fish and were incomers from the east. These results, while not so surprising historically, lend much increased confidence that isotope analysis can successfully read the status and mobility of individuals in a cemetery.
Resumo:
We compared output from 3 dynamic process-based models (DMs: ECOSSE, MILLENNIA and the Durham Carbon Model) and 9 bioclimatic envelope models (BCEMs; including BBOG ensemble and PEATSTASH) ranging from simple threshold to semi-process-based models. Model simulations were run at 4 British peatland sites using historical climate data and climate projections under a medium (A1B) emissions scenario from the 11-RCM (regional climate model) ensemble underpinning UKCP09. The models showed that blanket peatlands are vulnerable to projected climate change; however, predictions varied between models as well as between sites. All BCEMs predicted a shift from presence to absence of a climate associated with blanket peat, where the sites with the lowest total annual precipitation were closest to the presence/absence threshold. DMs showed a more variable response. ECOSSE predicted a decline in net C sink and shift to net C source by the end of this century. The Durham Carbon Model predicted a smaller decline in the net C sink strength, but no shift to net C source. MILLENNIA predicted a slight overall increase in the net C sink. In contrast to the BCEM projections, the DMs predicted that the sites with coolest temperatures and greatest total annual precipitation showed the largest change in carbon sinks. In this model inter-comparison, the greatest variation in model output in response to climate change projections was not between the BCEMs and DMs but between the DMs themselves, because of different approaches to modelling soil organic matter pools and decomposition amongst other processes. The difference in the sign of the response has major implications for future climate feedbacks, climate policy and peatland management. Enhanced data collection, in particular monitoring peatland response to current change, would significantly improve model development and projections of future change.