5 resultados para Dumont, P.-J. (Pierre-Joseph), b. 1768.
em CentAUR: Central Archive University of Reading - UK
Resumo:
The objective biomization method developed by Prentice et al. (1996) for Europe was extended using modern pollen samples from Beringia and then applied to fossil pollen data to reconstruct palaeovegetation patterns at 6000 and 18,000 14C yr bp. The predicted modern distribution of tundra, taiga and cool conifer forests in Alaska and north-western Canada generally corresponds well to actual vegetation patterns, although sites in regions characterized today by a mosaic of forest and tundra vegetation tend to be preferentially assigned to tundra. Siberian larch forests are delimited less well, probably due to the extreme under-representation of Larix in pollen spectra. The biome distribution across Beringia at 6000 14C yr bp was broadly similar to today, with little change in the northern forest limit, except for a possible northward advance in the Mackenzie delta region. The western forest limit in Alaska was probably east of its modern position. At 18,000 14C yr bp the whole of Beringia was covered by tundra. However, the importance of the various plant functional types varied from site to site, supporting the idea that the vegetation cover was a mosaic of different tundra types.
Resumo:
The virulence factor IpgD, delivered into nonphagocytic cells by the type III secretion system of the pathogen Shigella flexneri, is a phosphoinositide 4-phosphatase generating phosphatidylinositol 5 monophosphate (PtdIns(5) P). We show that PtdIns(5) P is rapidly produced and concentrated at the entry foci of the bacteria, where it colocalises with phosphorylated Akt during the first steps of infection. Moreover, S. flexneri-induced phosphorylation of host cell Akt and its targets specifically requires IpgD. Ectopic expression of IpgD in various cell types, but not of its inactive mutant, or addition of short-chain penetrating PtdIns(5) P is sufficient to induce Akt phosphorylation. Conversely, sequestration of PtdIns(5) P or reduction of its level strongly decreases Akt phosphorylation in infected cells or in IpgD-expressing cells. Accordingly, IpgD and PtdIns(5) P production specifically activates a class IA PI 3-kinase via a mechanism involving tyrosine phosphorylations. Thus, S. flexneri parasitism is shedding light onto a new mechanism of PI 3-kinase/Akt activation via PtdIns(5) P production that plays an important role in host cell responses such as survival.
Resumo:
We previously reported that soluble decay-accelerating factor (DAF) and coxsackievirus-adenovirus receptor (CAR) blocked coxsackievirus 133 (CVB3) myocarditis in mice, but only soluble CAR blocked CVB3-mediated pancreatitis. Here, we report that the in vitro mechanisms of viral inhibition by these soluble receptors also differ. Soluble DAF inhibited virus infection through the formation of reversible complexes with CVB3, while binding of soluble CAR to CVB induced the formation of altered (A) particles with a resultant irreversible loss of infectivity. A-particle formation was characterized by loss of VP4 from the virions and required incubation of CVB3-CAR complexes at 37 degrees C. Dimeric soluble DAF (DAF-Fc) was found to be 125-fold-more effective at inhibiting CVB3 than monomeric DAF, which corresponded to a 100-fold increase in binding affinity as determined by surface plasmon resonance analysis. Soluble CAR and soluble dimeric CAR (CAR-Fc) bound to CVB3 with 5,000- and 10,000-fold-higher affinities than the equivalent forms of DAF. While DAF-Fc was 125-fold-more effective at inhibiting virus than monomeric DAF, complement regulation by DAF-Fc was decreased 4 fold. Therefore, while the virus binding was a cooperative event, complement regulation was hindered by the molecular orientation of DAF-Fc, indicating that the regions responsible for complement regulation and virus binding do not completely overlap. Relative contributions of CVB binding affinity, receptor binding footprint on the virus capsid, and induction of capsid conformation alterations for the ability of cellular DAF and CAR to act as receptors are discussed.
Resumo:
Neurokinin (NK) B is a member of the tachykinin family of neurotransmitters, exerting hypotensive or hypertensive effects in the mammalian vasculature through synaptic release from peripheral neurons, according to either NK1 and NK2 or NK3 receptor subtype expression, respectively. There is recent evidence that NKB is expressed by the syncytiotrophoblast of the human placenta, an organ that is not innervated. We hypothesized that NKB is a paracrine modulator of tone in the fetal placental circulation. We tested this hypothesis using the in vitro perfused human placental cotyledon. Our data show that NKB is a dilator of the fetal vasculature, causing a maximal 25.1+/-4.5% (mean+/-SEM; n=5) decrease in fetal-side arterial hydrostatic pressure (5-muM NKB bolus; effective concentration in the circulation, 1.89 nM) after preconstriction with U-46619. RT-PCR demonstrated the presence of mRNA for NK1 and NK2 tachykinin receptors in the placenta. Using selective receptor antagonists, we found that NKB-induced vasodilation is through the NK1 receptor subtype. We found no evidence for the involvement of either nitric oxide or prostacyclin in this response. This study demonstrates a paracrine role for NKB in the regulation of fetal placental vascular tone.
Resumo:
The present study investigates the initiation of precipitating deep convection in an ensemble of convection-resolving mesoscale models. Results of eight different model runs from five non-hydrostatic models are compared for a case of the Convective and Orographically-induced Precipitation Study (COPS). An isolated convective cell initiated east of the Black Forest crest in southwest Germany, although convective available potential energy was only moderate and convective inhibition was high. Measurements revealed that, due to the absence of synoptic forcing, convection was initiated by local processes related to the orography. In particular, the lifting by low-level convergence in the planetary boundary layer is assumed to be the dominant process on that day. The models used different configurations as well as different initial and boundary conditions. By comparing the different model performance with each other and with measurements, the processes which need to be well represented to initiate convection at the right place and time are discussed. Besides an accurate specification of the thermodynamic and kinematic fields, the results highlight the role of boundary-layer convergence features for quantitative precipitation forecasts in mountainous terrain.