8 resultados para Ductile

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The assumption that negligible work is involved in the formation of new surfaces in the machining of ductile metals, is re-examined in the light of both current Finite Element Method (FEM) simulations of cutting and modern ductile fracture mechanics. The work associated with separation criteria in FEM models is shown to be in the kJ/m2 range rather than the few J/m2 of the surface energy (surface tension) employed by Shaw in his pioneering study of 1954 following which consideration of surface work has been omitted from analyses of metal cutting. The much greater values of surface specific work are not surprising in terms of ductile fracture mechanics where kJ/m2 values of fracture toughness are typical of the ductile metals involved in machining studies. This paper shows that when even the simple Ernst–Merchant analysis is generalised to include significant surface work, many of the experimental observations for which traditional ‘plasticity and friction only’ analyses seem to have no quantitative explanation, are now given meaning. In particular, the primary shear plane angle φ becomes material-dependent. The experimental increase of φ up to a saturated level, as the uncut chip thickness is increased, is predicted. The positive intercepts found in plots of cutting force vs. depth of cut, and in plots of force resolved along the primary shear plane vs. area of shear plane, are shown to be measures of the specific surface work. It is demonstrated that neglect of these intercepts in cutting analyses is the reason why anomalously high values of shear yield stress are derived at those very small uncut chip thicknesses at which the so-called size effect becomes evident. The material toughness/strength ratio, combined with the depth of cut to form a non-dimensional parameter, is shown to control ductile cutting mechanics. The toughness/strength ratio of a given material will change with rate, temperature, and thermomechanical treatment and the influence of such changes, together with changes in depth of cut, on the character of machining is discussed. Strength or hardness alone is insufficient to describe machining. The failure of the Ernst–Merchant theory seems less to do with problems of uniqueness and the validity of minimum work, and more to do with the problem not being properly posed. The new analysis compares favourably and consistently with the wide body of experimental results available in the literature. Why considerable progress in the understanding of metal cutting has been achieved without reference to significant surface work is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A review is given of the mechanics of cutting, ranging from the slicing of thin floppy offcuts (where there is negligible elasticity and no permanent deformation of the offcut) to the machining of ductile metals (where there is severe permanent distortion of the offcut/chip). Materials scientists employ the former conditions to determine the fracture toughness of ‘soft’ solids such as biological materials and foodstuffs. In contrast, traditional analyses of metalcutting are based on plasticity and friction only, and do not incorporate toughness. The machining theories are inadequate in a number of ways but a recent paper has shown that when ductile work of fracture is included many, if not all, of the shortcomings are removed. Support for the new analysis is given by examination of FEM simulations of metalcutting which reveal that a ‘separation criterion’ has to be employed at the tool tip. Some consideration shows that the separation criteria are versions of void-initiation-growth-and-coalescence models employed in ductile fracture mechanics. The new analysis shows that cutting forces for ductile materials depend upon the fracture toughness as well as plasticity and friction, and reveals a simple way of determining both toughness and flow stress from cutting experiments. Examples are given for a wide range of materials including metals, polymers and wood, and comparison is made with the same properties independently determined using conventional testpieces. Because cutting can be steady state, a new way is presented for simultaneously measuring toughness and flow stress at controlled speeds and strain rates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since ductile fracture (rupture) is the process by which junctions are separated and which prevents ever-increasing plasticity and junction growth, it is argued that models of friction ought to include toughness as well as yield strength. An expression for the coefficient of sliding friction is derived using ductile fracture mechanics. The predictions are quite reasonable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The implications of whether new surfaces in cutting are formed just by plastic flow past the tool or by some fracturelike separation process involving significant surface work, are discussed. Oblique metalcutting is investigated using the ideas contained in a new algebraic model for the orthogonal machining of metals (Atkins, A. G., 2003, "Modeling Metalcutting Using Modern Ductile Fracture Mechanics: Quantitative Explanations for Some Longstanding Problems," Int. J. Mech. Sci., 45, pp. 373–396) in which significant surface work (ductile fracture toughnesses) is incorporated. The model is able to predict explicit material-dependent primary shear plane angles and provides explanations for a variety of well-known effects in cutting, such as the reduction of at small uncut chip thicknesses; the quasilinear plots of cutting force versus depth of cut; the existence of a positive force intercept in such plots; why, in the size-effect regime of machining, anomalously high values of yield stress are determined; and why finite element method simulations of cutting have to employ a "separation criterion" at the tool tip. Predictions from the new analysis for oblique cutting (including an investigation of Stabler's rule for the relation between the chip flow velocity angle C and the angle of blade inclination i) compare consistently and favorably with experimental results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The complete fracture behaviour of ductile double edge notched tension (DENT) specimen is analysed with an approximate model, which is then used to discuss the essential work of fracture (EWF) concept. The model results are compared with the experimental results for an aluminium alloy 6082-O. The restrictions on the ligament size for valid application of the EWF method are discussed with the aid of the model. The model is used to suggest an improved method of obtaining the cohesive stress-displacement relationship for the fracture process zone (FPZ).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The book is part of a multi-year investigation on the historical construction and representation of ethnic otherness through the use of language, and focuses on the history of the tópos expressed by the proverb Lavare/sbiancare un etiope (‘to wash an Ethiop white’), a tópos which is traceable in different languages across many centuries (and since II c. A.D.), which stays for either ‘to attempt the impossible’ or ‘to do something useless’. The research also tries to shine a light upon the cultural and social contexts in which ‘Ethiopian’ otherness have generated. Its final goal is to find out how the washing-the-Ethiopian tópos (in its verbal and iconographical forms) has become long-lasting, ductile and semantically productive key expression whose heterogeneous use not only document but also produce and fix otherness in time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sea ice contains flaws including frictional contacts. We aim to describe quantitatively the mechanics of those contacts, providing local physics for geophysical models. With a focus on the internal friction of ice, we review standard micro-mechanical models of friction. The solid's deformation under normal load may be ductile or elastic. The shear failure of the contact may be by ductile flow, brittle fracture, or melting and hydrodynamic lubrication. Combinations of these give a total of six rheological models. When the material under study is ice, several of the rheological parameters in the standard models are not constant, but depend on the temperature of the bulk, on the normal stress under which samples are pressed together, or on the sliding velocity and acceleration. This has the effect of making the shear stress required for sliding dependent on sliding velocity, acceleration, and temperature. In some cases, it also perturbs the exponent in the normal-stress dependence of that shear stress away from the value that applies to most materials. We unify the models by a principle of maximum displacement for normal deformation, and of minimum stress for shear failure, reducing the controversy over the mechanism of internal friction in ice to the choice of values of four parameters in a single model. The four parameters represent, for a typical asperity contact, the sliding distance required to expel melt-water, the sliding distance required to break contact, the normal strain in the asperity, and the thickness of any ductile shear zone.