4 resultados para Drug determination
em CentAUR: Central Archive University of Reading - UK
Resumo:
Details about the parameters of kinetic systems are crucial for progress in both medical and industrial research, including drug development, clinical diagnosis and biotechnology applications. Such details must be collected by a series of kinetic experiments and investigations. The correct design of the experiment is essential to collecting data suitable for analysis, modelling and deriving the correct information. We have developed a systematic and iterative Bayesian method and sets of rules for the design of enzyme kinetic experiments. Our method selects the optimum design to collect data suitable for accurate modelling and analysis and minimises the error in the parameters estimated. The rules select features of the design such as the substrate range and the number of measurements. We show here that this method can be directly applied to the study of other important kinetic systems, including drug transport, receptor binding, microbial culture and cell transport kinetics. It is possible to reduce the errors in the estimated parameters and, most importantly, increase the efficiency and cost-effectiveness by reducing the necessary amount of experiments and data points measured. (C) 2003 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Resumo:
Observation of adverse drug reactions during drug development can cause closure of the whole programme. However, if association between the genotype and the risk of an adverse event is discovered, then it might suffice to exclude patients of certain genotypes from future recruitment. Various sequential and non-sequential procedures are available to identify an association between the whole genome, or at least a portion of it, and the incidence of adverse events. In this paper we start with a suspected association between the genotype and the risk of an adverse event and suppose that the genetic subgroups with elevated risk can be identified. Our focus is determination of whether the patients identified as being at risk should be excluded from further studies of the drug. We propose using a utility function to? determine the appropriate action, taking into account the relative costs of suffering an adverse reaction and of failing to alleviate the patient's disease. Two illustrative examples are presented, one comparing patients who suffer from an adverse event with contemporary patients who do not, and the other making use of a reference control group. We also illustrate two classification methods, LASSO and CART, for identifying patients at risk, but we stress that any appropriate classification method could be used in conjunction with the proposed utility function. Our emphasis is on determining the action to take rather than on providing definitive evidence of an association. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
A novel and generic miniaturization methodology for the determination of partition coefficient values of organic compounds in noctanol/water by using magnetic nanoparticles is, for the first time, described. We have successfully designed, synthesised and characterised new colloidal stable porous silica-encapsulated magnetic nanoparticles of controlled dimensions. These nanoparticles absorbing a tiny amount of n-octanol in their porous silica over-layer are homogeneously dispersed into a bulk aqueous phase (pH 7.40) containing an organic compound prior to magnetic separation. The small size of the particles and the efficient mixing allow a rapid establishment of the partition equilibrium of the organic compound between the solid supported n-octanol nano-droplets and the bulk aqueous phase. UV-vis spectrophotometry is then applied as a quantitative method to determine the concentration of the organic compound in the aqueous phase both before and after partitioning (after magnetic separation). log D values of organic compounds of pharmaceutical interest (0.65-3.50), determined by this novel methodology, were found to be in excellent agreement with the values measured by the shake-flask method in two independent laboratories, which are also consistent with the literature data. It was also found that this new technique gives a number of advantages such as providing an accurate measurement of log D value, a much shorter experimental time and a smaller sample size required. With this approach, the formation of a problematic emulsion, commonly encountered in shake-flask experiments, is eliminated. It is envisaged that this method could be applicable to the high throughput log D screening of drug candidates. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
almonella enterica serovar Typhimurium is an established model organism for Gram-negative, intracellular pathogens. Owing to the rapid spread of resistance to antibiotics among this group of pathogens, new approaches to identify suitable target proteins are required. Based on the genome sequence of Salmonella Typhimurium and associated databases, a genome-scale metabolic model was constructed. Output was based on an experimental determination of the biomass of Salmonella when growing in glucose minimal medium. Linear programming was used to simulate variations in energy demand, while growing in glucose minimal medium. By grouping reactions with similar flux responses, a sub-network of 34 reactions responding to this variation was identified (the catabolic core). This network was used to identify sets of one and two reactions, that when removed from the genome-scale model interfered with energy and biomass generation. 11 such sets were found to be essential for the production of biomass precursors. Experimental investigation of 7 of these showed that knock-outs of the associated genes resulted in attenuated growth for 4 pairs of reactions, while 3 single reactions were shown to be essential for growth.