11 resultados para Doris Salcedo
em CentAUR: Central Archive University of Reading - UK
Resumo:
A novel series of linear, high molecular weight polymers were synthesized by one-pot, superacid-catalyzed reaction of acenaphthenequinone (1) with aromatic hydrocarbons. The reactions were performed at room temperature in the Bronsted superacid CF3SO3H (trifluoromethanesulfonic acid, TFSA) and in a mixture of TFSA with methanesulfonic acid (MSA) and trifluoroacetic acid (TFA), which was used as both solvent and a medium for generation of electrophilic species from acenaphthenequinone. The polymer-forming reaction was found to be dependent greatly on the acidity of the reaction medium, as judged from the viscosity of the polymers obtained. Polycondensations of acenaphthenequinone with 4,4'-diphenoxybenzophenone (f), 1,3-bis(4-phenoxybenzoyl)benzene (g), 1,4-bis(4-phenoxybenzoyl)benzene (h), 1,10-bis(4-phenoxyphenyl)decane-1,10-dione (i), 2,6-diphenoxybenzonitrile), 2,6-diphenoxybenzoic acid (k), and 2-(4-biphenylyl)-6-phenylbenzoxazole (1) proceeded in a reaction medium of wide range of acidity, including pure TFSA (Hammett acidity function H-0 of pure TFSA is -14.1), whereas condensation of 1 with biphenyl, terphenyl, diphenyl ether, and 1,4-diphenoxybenzene needed a reaction medium of acidity H-0 less than -11.5. A possible reaction mechanism is suggested. The polymers obtained were found to be soluble in the common organic solvents, and flexible transparent films could be cast from the solutions. H-1 and C-13 NMR analyses of the polymers synthesized revealed their linear, highly regular structure. The polymers also possess high thermostability. Char yields for polymers 3a, 3c, 3d, and 3l in nitrogen were close to 80% at 1000 degrees C.
Resumo:
A new generation of advanced surveillance systems is being conceived as a collection of multi-sensor components such as video, audio and mobile robots interacting in a cooperating manner to enhance situation awareness capabilities to assist surveillance personnel. The prominent issues that these systems face are: the improvement of existing intelligent video surveillance systems, the inclusion of wireless networks, the use of low power sensors, the design architecture, the communication between different components, the fusion of data emerging from different type of sensors, the location of personnel (providers and consumers) and the scalability of the system. This paper focuses on the aspects pertaining to real-time distributed architecture and scalability. For example, to meet real-time requirements, these systems need to process data streams in concurrent environments, designed by taking into account scheduling and synchronisation. The paper proposes a framework for the design of visual surveillance systems based on components derived from the principles of Real Time Networks/Data Oriented Requirements Implementation Scheme (RTN/DORIS). It also proposes the implementation of these components using the well-known middleware technology Common Object Request Broker Architecture (CORBA). Results using this architecture for video surveillance are presented through an implemented prototype.
Resumo:
Ice cloud representation in general circulation models remains a challenging task, due to the lack of accurate observations and the complexity of microphysical processes. In this article, we evaluate the ice water content (IWC) and ice cloud fraction statistical distributions from the numerical weather prediction models of the European Centre for Medium-Range Weather Forecasts (ECMWF) and the UK Met Office, exploiting the synergy between the CloudSat radar and CALIPSO lidar. Using the last three weeks of July 2006, we analyse the global ice cloud occurrence as a function of temperature and latitude and show that the models capture the main geographical and temperature-dependent distributions, but overestimate the ice cloud occurrence in the Tropics in the temperature range from −60 °C to −20 °C and in the Antarctic for temperatures higher than −20 °C, but underestimate ice cloud occurrence at very low temperatures. A global statistical comparison of the occurrence of grid-box mean IWC at different temperatures shows that both the mean and range of IWC increases with increasing temperature. Globally, the models capture most of the IWC variability in the temperature range between −60 °C and −5 °C, and also reproduce the observed latitudinal dependencies in the IWC distribution due to different meteorological regimes. Two versions of the ECMWF model are assessed. The recent operational version with a diagnostic representation of precipitating snow and mixed-phase ice cloud fails to represent the IWC distribution in the −20 °C to 0 °C range, but a new version with prognostic variables for liquid water, ice and snow is much closer to the observed distribution. The comparison of models and observations provides a much-needed analysis of the vertical distribution of IWC across the globe, highlighting the ability of the models to reproduce much of the observed variability as well as the deficiencies where further improvements are required.
Resumo:
Robust and physically understandable responses of the global atmospheric water cycle to a warming climate are presented. By considering interannual responses to changes in surface temperature (T), observations and AMIP5 simulations agree on an increase in column integrated water vapor at the rate 7 %/K (in line with the ClausiusClapeyron equation) and of precipitation at the rate 2-3 %/K (in line with energetic constraints). Using simple and complex climate models, we demonstrate that radiative forcing by greenhouse gases is currently suppressing global precipitation (P) at ~ -0.15 %/decade. Along with natural variability, this can explain why observed trends in global P over the period 1988-2008 are close to zero. Regional responses in the global water cycle are strongly constrained by changes in moisture fluxes. Model simulations show an increased moisture flux into the tropical wet region at 900 hPa and an enhanced outflow (of smaller magnitude) at around 600 hPa with warming. Moisture transport explains an increase in P in the wet tropical regions and small or negative changes in the dry regions of the subtropics in CMIP5 simulations of a warming climate. For AMIP5 simulations and satellite observations, the heaviest 5-day rainfall totals increase in intensity at ~15 %/K over the ocean with reductions at all percentiles over land. The climate change response in CMIP5 simulations shows consistent increases in P over ocean and land for the highest intensities, close to the Clausius-Clapeyron scaling of 7 %/K, while P declines for the lowest percentiles, indicating that interannual variability over land may not be a good proxy for climate change. The local changes in precipitation and its extremes are highly dependent upon small shifts in the large-scale atmospheric circulation and regional feedbacks.
Resumo:
We describe Global Atmosphere 4.0 (GA4.0) and Global Land 4.0 (GL4.0): configurations of the Met Office Unified Model and JULES (Joint UK Land Environment Simulator) community land surface model developed for use in global and regional climate research and weather prediction activities. GA4.0 and GL4.0 are based on the previous GA3.0 and GL3.0 configurations, with the inclusion of developments made by the Met Office and its collaborators during its annual development cycle. This paper provides a comprehensive technical and scientific description of GA4.0 and GL4.0 as well as details of how these differ from their predecessors. We also present the results of some initial evaluations of their performance. Overall, performance is comparable with that of GA3.0/GL3.0; the updated configurations include improvements to the science of several parametrisation schemes, however, and will form a baseline for further ongoing development.
Resumo:
Dans une perspective historique, ce chapitre cherche à comprendre comment le travail des enfants a été construit comme « problème » dans les politiques publiques au Burkina Faso. En remontant aux politiques coloniales françaises dans le pays, il se propose de répondre à la question suivante : face à l’émergence et au renforcement des politiques publiques de lutte contre le travail des enfants, assiste-t-on à une disparition du modèle de l’enfant du lignage qui percevait l’enfant comme une « richesse » et une force de travail complémentaire? Le chapitre présente d’abord la construction progressive du travail des enfants en « problème » de politiques publiques pendant la colonisation. Il analyse ensuite l’évolution et la portée de l’intervention des gouvernements successifs après l’indépendance pour imposer une nouvelle vision de l’enfant (l’enfant de la Nation). Enfin, il révèle que malgré l’engouement récent pour la prise en compte du point de vue l’enfant, le statut de l’enfant travailleur comme sujet peine à être reconnu. L’analyse globale montre une tension permanente, à des degrés différents, entre les modèles de l’enfant de la nation, de l’enfant du lignage et de l’enfant sujet : ce qui traduit aussi la complexité du travail des enfants et de sa lutte au Burkina Faso contemporain. Le texte est issu d’un travail de terrain mené au Burkina Faso en 2008 et 2009 dans le cadre de notre thèse.
Resumo:
The latest coupled configuration of the Met Office Unified Model (Global Coupled configuration 2, GC2) is presented. This paper documents the model components which make up the configuration (although the scientific description of these components is detailed elsewhere) and provides a description of the coupling between the components. The performance of GC2 in terms of its systematic errors is assessed using a variety of diagnostic techniques. The configuration is intended to be used by the Met Office and collaborating institutes across a range of timescales, with the seasonal forecast system (GloSea5) and climate projection system (HadGEM) being the initial users. In this paper GC2 is compared against the model currently used operationally in those two systems. Overall GC2 is shown to be an improvement on the configurations used currently, particularly in terms of modes of variability (e.g. mid-latitude and tropical cyclone intensities, the Madden–Julian Oscillation and El Niño Southern Oscillation). A number of outstanding errors are identified with the most significant being a considerable warm bias over the Southern Ocean and a dry precipitation bias in the Indian and West African summer monsoons. Research to address these is ongoing.
Resumo:
The Southern Ocean is a critical region for global climate, yet large cloud and solar radiation biases over the Southern Ocean are a long-standing problem in climate models and are poorly understood, leading to biases in simulated sea surface temperatures. This study shows that supercooled liquid clouds are central to understanding and simulating the Southern Ocean environment. A combination of satellite observational data and detailed radiative transfer calculations is used to quantify the impact of cloud phase and cloud vertical structure on the reflected solar radiation in the Southern Hemisphere summer. It is found that clouds with supercooled liquid tops dominate the population of liquid clouds. The observations show that clouds with supercooled liquid tops contribute between 27% and 38% to the total reflected solar radiation between 40° and 70°S, and climate models are found to poorly simulate these clouds. The results quantify the importance of supercooled liquid clouds in the Southern Ocean environment and highlight the need to improve understanding of the physical processes that control these clouds in order to improve their simulation in numerical models. This is not only important for improving the simulation of present-day climate and climate variability, but also relevant for increasing confidence in climate feedback processes and future climate projections.