50 resultados para Dopamine receptor antagonist
em CentAUR: Central Archive University of Reading - UK
Resumo:
Background and purpose: The aim of this report is to study mechanisms of G protein activation by agonists. Experimental approach: The association and dissociation of guanosine 5'-O-(3-[S-35] thio) triphosphate ([S-35] GTP gamma S) binding at G proteins in membranes of CHO cells stably transfected with the human dopamine D-2short receptor was studied in the presence of a range of agonists. Key results: Binding of [S-35] GTPgS was dissociable in the absence of agonist and dissociation was accelerated both in rate and extent by dopamine, an effect which was blocked by the dopamine D-2 receptor antagonist raclopride and by suramin, which inhibits receptor/G protein interaction. A range of agonists of varying efficacy increased the rate of dissociation of [S-35] GTPgS binding, with the more efficacious agonists resulting in faster dissociation. Agonists were able to dissociate about 70% of the pre-bound [S-35] GTPgS, leaving a component which may not be accessible to the agonist-bound receptor. The dissociable component of the [S-35] GTPgS binding was reduced with longer association times and increased [S-35] GTPgS concentrations. Conclusions and implications: These data are consistent with [S-35] GTPgS binding being initially to receptor-linked G proteins and then to G proteins which have separated from the agonist bound receptor. Under the conditions used typically for [S-35] GTPgS binding assays, therefore, much of the agonist-receptor complex remains in proximity to G proteins after they have been activated by agonist.
Resumo:
The D 2 dopamine receptor exists as dimers or as higher-order oligomers, as determined from data from physical experiments. In this study, we sought evidence that this oligomerization leads to cooperativity by examining the binding of three radioligands ([H-3] nemonapride, [H-3] raclopride, and [H-3] spiperone) to D 2 dopamine receptors expressed in membranes of Sf9 cells. In saturation binding experiments, the three radioligands exhibited different B-max values, and the B-max values could be altered by the addition of sodium ions to assays. Despite labeling different numbers of sites, the different ligands were able to achieve full inhibition in competition experiments. Some ligand pairs also exhibited complex inhibition curves in these experiments. In radioligand dissociation experiments, the rate of dissociation of [H-3] nemonapride or [H-3] spiperone depended on the sodium ion concentration but was independent of the competing ligand. Although some of the data in this study are consistent with the behavior of a cooperative oligomeric receptor, not all of the data are in agreement with this model. It may, therefore, be necessary to consider more complex models for the behavior of this receptor.
Resumo:
The human D-2short (D-2S) dopamine receptor has been expressed together with the G proteins Gi2 and Go in insect cells using the baculovirus system. Levels of receptor were determined using [H-3]spiperone binding. Levels of G protein heterotrimer were determined using quantitative Western blot and using [S-35]GTPgammaS saturation binding experiments. Levels of the receptor and G protein and the receptor/G protein ratio were similar in the two preparations. Stimulation of [S-35]GTPgammaS binding by a range of agonists occurred with higher relative efficacy and in some cases higher potency in the preparation expressing Go, indicating that interaction of the D-2S receptor is more efficient with this G protein. The effects of various G protein-selective agents on 10,11-dihydroxy-N-n-propylnorapomorphine ([H-3]NPA) binding were used to examine the receptor/G protein complex in the two preparations. Suramin inhibited [H-3]NPA binding with slightly higher potency in the Gi2 preparation, whereas GppNHp inhibited [H-3]NPA binding with greater potency (similar to6-fold) in the Go preparation. This may imply that the G protein is more readily activated in the D-2S/Go preparation. [H-3]Spiperone binding occurred with an increased B-max in the presence of suramin in the Go preparation but not in the Gi2 preparation, suggesting a higher affinity interaction between the free receptor and this G protein. It is concluded that the higher efficiency activation of Go by the D-2S receptor may be a function of higher affinity receptor/G protein interaction as well as a greater ability to activate the G protein. (C) 2003 Elsevier Science Inc. All rights reserved.
Resumo:
The antipsychotic drugs had been assumed to act as antagonists at D-2 dopamine receptors but recently these drugs have been shown to possess inverse agonist properties at this receptor. Inverse agonism may be demonstrated from the ability of these drugs to potentiate forskolin-stimulated cAMP accumulation or to suppress agonist-independent [S-35]GTPgammaS binding. The antipsychotic drugs tested generally appear as full inverse agonists in these assays regardless of chemical or therapeutic class. The mechanism of inverse agonism of the antipsychotic drugs is still unclear but may involve stabilisation of the ground state of the D-2 receptor. (C) 2003 Elsevier Science B.V All rights reserved.
Resumo:
The D 2 dopamine receptor exists as dimers or as higher-order oligomers, as determined from data from physical experiments. In this study, we sought evidence that this oligomerization leads to cooperativity by examining the binding of three radioligands ([H-3] nemonapride, [H-3] raclopride, and [H-3] spiperone) to D 2 dopamine receptors expressed in membranes of Sf9 cells. In saturation binding experiments, the three radioligands exhibited different B-max values, and the B-max values could be altered by the addition of sodium ions to assays. Despite labeling different numbers of sites, the different ligands were able to achieve full inhibition in competition experiments. Some ligand pairs also exhibited complex inhibition curves in these experiments. In radioligand dissociation experiments, the rate of dissociation of [H-3] nemonapride or [H-3] spiperone depended on the sodium ion concentration but was independent of the competing ligand. Although some of the data in this study are consistent with the behavior of a cooperative oligomeric receptor, not all of the data are in agreement with this model. It may, therefore, be necessary to consider more complex models for the behavior of this receptor.
Resumo:
Background and purpose: Low efficacy partial agonists at the D-2 dopamine receptor may be useful for treating schizophrenia. In this report we describe a method for assessing the efficacy of these compounds based on stimulation of [S-35]GTP gamma S binding. Experimental approach: Agonist efficacy was assessed from [S-35]GTP gamma S binding to membranes of CHO cells expressing D2 dopamine receptors in buffers with and without Na+. Effects of Na+ on receptor/G protein coupling were assessed using agonist/[H-3] spiperone competition binding assays. Key results: When [S-35]GTP gamma S binding assays were performed in buffers containing Na+, some agonists (aripiprazole, AJ-76, UH-232) exhibited very low efficacy whereas other agonists exhibited measurable efficacy. When Na+ was substituted by N-methyl D-glucamine, the efficacy of all agonists increased (relative to that of dopamine) but particularly for aripiprazole, aplindore, AJ-76, (-)-3-PPP and UH-232. In ligand binding assays, substitution of Na+ by N-methyl D-glucamine increased receptor/G protein coupling for some agonists -. aplindore, dopamine and (-)-3-PPP-but for aripiprazole, AJ-76 and UH-232 there was little effect on receptor/G protein coupling. Conclusions and implications: Substitution of Na+ by NMDG increases sensitivity in [S-35] GTPgS binding assays so that very low efficacy agonists were detected clearly. For some agonists the effect seems to be mediated via enhanced receptor/G protein coupling whereas for others the effect is mediated at another point in the G protein activation cycle. AJ-76, aripiprazole and UH-232 seem particularly sensitive to this change in assay conditions. This work provides a new method to discover these very low efficacy agonists.
Resumo:
The paraventricular nucleus (PVN) of the hypothalamus plays a key role in the control of appetite and energy balance. Both ghrelin and cannabinoid receptor agonists increase food intake when administered into this nucleus: this study investigated possible interactions between the two systems in relation to eating. The orexigenic effect of ghrelin (100 pmol) when infused in to the PVN was reversed by a small, systemic dose of the CB1 cannabinoid receptor antagonist SR141716 (1 mg kg(-1)). This is the first demonstration of a functional relationship between brain ghrelin and endocannabinoid systems, and, although it needs to be further investigated, the effect of ghrelin on food intake when injected into the PVN seems to be mediated by stimulation of cannabinoid release.
Resumo:
Rationale: Animal studies indicate that dopamine pathways in the ventral striatum code for the motivational salience of both rewarding and aversive stimuli, but evidence for this mechanism in humans is less established. We have developed a functional magnetic resonance imaging (fMRI) model which permits examination of the neural processing of both rewarding and aversive stimuli. Objectives: The aim of the study was to determine the effect of the dopamine receptor antagonist, sulpiride, on the neural processing of rewarding and aversive stimuli in healthy volunteers. Methods: We studied 30 healthy participants who were randomly allocated to receive a single dose of sulpiride (400 mg) or placebo, in a double-blind, parallel-group design. We used fMRI to measure the neural response to rewarding (taste or sight of chocolate) and aversive stimuli (sight of mouldy strawberries or unpleasant strawberry taste) 4 h after drug treatment. Results: Relative to placebo, sulpiride reduced blood oxygenation level-dependent responses to chocolate stimuli in the striatum (ventral striatum) and anterior cingulate cortex. Sulpiride also reduced lateral orbitofrontal cortex and insula activations to the taste and sight of the aversive condition. Conclusions: These results suggest that acute dopamine receptor blockade modulates mesolimbic and mesocortical neural activations in response to both rewarding and aversive stimuli in healthy volunteers. This effect may be relevant to the effects of dopamine receptor antagonists in the treatment of psychosis and may also have implications for the possible antidepressant properties of sulpiride.
Resumo:
This study investigated, for the D-2 dopamine receptor, the relation between the ability of agonists and inverse agonists to stabilise different states of the receptor and their relative efficacies. K-i values for agonists were determined in competition, versus the binding of the antagonist [H-3]spiperone. Competition data were fitted best by a two-binding site model (with the exception of bromocriptine, for which a one-binding site model provided the best fit) and agonist affinities for the higher (K-h) (G protein-coupled) and lower affinity (K-l) (G protein-uncoupled) sites determined. Ki values for agonists were also determined in competition versus the binding of the agonist [H-3]N-propylnorapomorphine (NPA) to provide a second estimate of K-h,. Maximal agonist effects (E-max) and their potencies (EC50) were determined from concentration-response curves for agonist stimulation of guanosine-5'-O-(3-[S-32] thiotriphosphate) ([S-35]GTPgammaS) binding. The ability of agonists to stabilise the G protein-coupled state of the receptor (K-l/K-h, determined from ligand-binding assays) did not correlate with either of two measures of relative efficacy (relative E-max, Kl/EC50) of agonists determined in [S-35]GTPgammaS-binding assays, when the data for all of the compounds tested were analysed For a subset of compounds, however, there was a relation between K-l/K-h and E-max.. Competition-binding data versus [H-3]spiperone and [H-3]NPA for a range of inverse agonists were fitted best by a one-binding site model. K-i values for the inverse agonists tested were slightly lower in competition versus [H-3]NPA compared to [H-3]spiperone. These data do not provide support for the idea that inverse agonists act by binding preferentially to the ground state of the receptor. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
BACKGROUND: Accelerated gastric emptying (GE) may lead to reduced satiation, increased food intake and is associated with obesity and type 2 diabetes. Domperidone is a dopamine 2 (D(2)) receptor antagonist with claims of gastrointestinal tract pro-kinetic activity. In humans, domperidone is used as an anti-emetic and treatment for gastrointestinal bloating and discomfort. AIM: To determine the effect of acute domperidone administration on GE rate and appetite sensations in healthy adults. METHODS: A single-blind block randomised placebo-controlled crossover study assessed 13 healthy adults. Subjects ingested 10 mg domperidone or placebo 30 min before a high-fat (HF) test meal. GE rate was determined using the (13)CO(2) octanoic acid breath test. Breath samples and subjective appetite ratings were collected in the fasted and during the 360 min postprandial period. RESULTS:Gastric emptying half-time was similar following placebo (254 ± 54 min) and 10 mg domperidone (236 ± 65 min). Domperidone did not change appetite sensations during the 360 min postprandial period (P > 0.05). CONCLUSIONS: In healthy adults, acute administration of 10 mg domperidone did not change GE or appetite sensations following a HF test meal.
Resumo:
1 Mechanisms of inverse agonist action at the D-2(short) dopamine receptor have been examined. 2 Discrimination of G-protein-coupled and -uncoupled forms of the receptor by inverse agonists was examined in competition ligand-binding studies versus the agonist [H-3]NPA at a concentration labelling both G-protein-coupled and -uncoupled receptors. 3 Competition of inverse agonists versus [H-3] NPA gave data that were fitted best by a two-binding site model in the absence of GTP but by a one-binding site model in the presence of GTP. K-i values were derived from the competition data for binding of the inverse agonists to G-protein-uncoupled and -coupled receptors. K-coupled and K-uncoupled were statistically different for the set of compounds tested ( ANOVA) but the individual values were different in a post hoc test only for (+)-butaclamol. 4 These observations were supported by simulations of these competition experiments according to the extended ternary complex model. 5 Inverse agonist efficacy of the ligands was assessed from their ability to reduce agonist-independent [S-35]GTPγ S binding to varying degrees in concentration-response curves. Inverse agonism by (+)-butaclamol and spiperone occurred at higher potency when GDP was added to assays, whereas the potency of (-)-sulpiride was unaffected. 6 These data show that some inverse agonists ((+)-butaclamol, spiperone) achieve inverse agonism by stabilising the uncoupled form of the receptor at the expense of the coupled form. For other compounds tested, we were unable to define the mechanism.
Resumo:
There is increasing evidence that G protein-coupled receptors form oligomers and that this might be important for their function. We have studied this phenomenon for the D-2 dopamine receptor and have shown-using a variety of biochemical and biophysical techniques-that this receptor forms dimers or higher-order oligomers. Using ligand-binding studies, we have also found evidence that this oligomer formation has functional relevance. Thus, for the receptor expressed in either CHO cells or Sf 9 insect cells, the binding properties of several radioligands (in saturation, competition, and dissociation assays) do not conform to those expected for a monomeric receptor with a single binding site. We propose that the receptors exist in oligomers with homotropic and heterotropic negatively cooperative interactions between ligands.
Resumo:
In previous studies, we have shown that agonists influence the ability of D-2 dopamine receptors to couple to G proteins and here we extend this work. The human D-2Short dopamine receptor and a natural polymorphism of this D-2Short(Ser(311)Cys), have been studied by co-expressing the receptors in insect cells with Gbeta(1)gamma(2) and either Galpha(o), Galpha(i1), Galpha(i2) or Galpha(i3) G protein subunits. These preparations have been used to study the G protein coupling profiles of the two receptors and the influence of agonists. Receptor/G protein coupling was analysed in dopamine/[H-3]spiperone competition binding experiments and through stimulation of [S-35]GTPgammaS binding. Although the Ser(311)Cys polymorphism itself had no appreciable effect on the G protein coupling specificity of the D-2 receptor, agonist stimulation of [S-35]GTPgammaS binding, revealed that both dopamine and (+)-3PPP showed a clear preference for Galpha(o) compared to the Galpha(i) subtypes, but quinpirole did not. These results indicate that agonists are able to stabilise different receptor conformations with different abilities to couple to G proteins. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
In this study, we investigated the biochemical mechanisms of agonist action at the G protein-coupled D-2 dopamine receptor expressed in Chinese hamster ovary cells. Stimulation of guanosine 5'-O-(3-[S-35]thio) triphosphate ([S-35]GTPgammaS) binding by full and partial agonists was determined at different concentrations of [S-35]GTPgammaS (0.1 and 10 nM) and in the presence of different concentrations of GDP. At both concentrations of [S-35]GTPgammaS, increasing GDP decreased the [S-35]GTPgammaS binding observed with maximally stimulating concentrations of agonist, with partial agonists exhibiting greater sensitivity to the effects of GDP than full agonists. The relative efficacy of partial agonists was greater at the lower GDP concentrations. Concentration-response experiments were performed for a range of agonists at the two [S-35]GTPgammaS concentrations and with different concentrations of GDP. At 0.1 nM [S-35]GTPgammaS, the potency of both full and partial agonists was dependent on the GDP concentration in the assays. At 10 nM [S-35]GTPgammaS, the potency of full agonists exhibited a greater dependence on the GDP concentration, whereas the potency of partial agonists was virtually independent of GDP. We concluded that at the lower [S-35]GTPgammaS concentration, the rate-determining step in G protein activation is the binding of [S-35]GTPgammaS to the G protein. At the higher [S-35]GTPgammaS concentration, for full agonists, [S-35]GTPgammaS binding remains the slowest step, whereas for partial agonists, another (GDP-independent) step, probably ternary complex breakdown, becomes rate-determining.