2 resultados para Dna Marker

em CentAUR: Central Archive University of Reading - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

DNA barcodes could be a useful tool for plant conservation. Of particular importance is the ability to identify unknown plant material, such as from customs seizures of illegally collected specimens. Mexican cacti are an example of a threatened group, under pressure because of wild collection for the xeriscaping trade and private collectors. Mexican cacti also provide a taxonomically and geographically coherent group with which to test DNA barcodes. Here, we sample the matK barcode for 528 species of Cactaceae including approximately 75% of Mexican species and test the utility of the matK region for species-level identification. We find that the matK DNA barcode can be used to identify uniquely 77% of species sampled, and 79-87% of species of particular conservation importance. However, this is far below the desired rate of 95% and there are significant issues for PCR amplification because of the variability of primer sites. Additionally, we test the nuclear ITS regions for the cactus subfamily Opuntioideae and for the genus Ariocarpus (subfamily Cactoideae). We observed higher rates of variation for ITS (86% unique for Opuntioideae sampled) but a much lower PCR success, encountering significant intra-individual polymorphism in Ariocarpus precluding the use of this marker in this taxon. We conclude that the matK region should provide useful information as a DNA barcode for Cactaceae if the problems with primers can be addressed, but matK alone is not sufficiently variable to achieve species-level identification. Additional complementary regions should be investigated as ITS is shown to be unsuitable

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The [Ru(phen)2(dppz)]2+ complex (1) is non-emissive in water but is highly luminescent in organic solvents or when bound to DNA, making it a useful probe for DNA binding. To date, a complete mechanistic explanation for this “light-switch” effect is still lacking. With this in mind we have undertaken an ultrafast time resolved infrared (TRIR) study of 1 and directly observe marker bands between 1280–1450 cm-1, which characterise both the emissive “bright” and the non-emissive “dark” excited states of the complex, in CD3CN and D2O respectively. These characteristic spectral features are present in the [Ru(dppz)3]2+ solvent light-switch complex but absent in [Ru(phen)3]2+, which is luminescent in both solvents. DFT calculations show that the vibrational modes responsible for these characteristic bands are predominantly localised on the dppz ligand. Moreover, they reveal that certain vibrational modes of the “dark” excited state couple with vibrational modes of two coordinating water molecules, and through these to the bulk solvent, thus providing a new insight into the mechanism of the light-switch effect. We also demonstrate that the marker bands for the “bright” state are observed for both L- and D enantiomers of 1 when bound to DNA and that photo-excitation of the complex induces perturbation of the guanine and cytosine carbonyl bands. This perturbation is shown to be stronger for the L enantiomer, demonstrating the different binding site properties of the two enantiomers and the ability of this technique to determine the identity and nature of the binding site of such intercalators.