96 resultados para Diverse Roles
em CentAUR: Central Archive University of Reading - UK
Resumo:
Fatty acids are known to play diverse roles in immune cells. They are important as a source of energy, as structural components of cell membranes, as signaling molecules and as precursors for the synthesis of eicosanoids and similar mediators. Recent research has suggested that the localization and organisation of fatty acids into distinct cellular pools has a direct influence on the behaviour of a number of proteins involved in immune cell activation, including those associated with T cell responses, antigen presentation and fatty acid-derived inflammatory mediator production. This article reviews these studies and places them in the context of existing literature in the field. These studies indicate the existence of several novel mechanisms by which altered fatty acid availability can modulate immune responses and impact upon clinical outcomes
Resumo:
Fatty acids have diverse roles in all cells. They are important as a source of energy, as structural components of cell membranes, as signalling molecules and as precursors for the synthesis of eicosanoids. Recent research has suggested that the organization of fatty acids into distinct cellular pools has a particularly important role in cells of the immune system and that forms of lipid trafficking exist, which are as yet poorly understood. This Review examines the nature and regulation of cellular lipid pools in the immune system, their delivery of fatty acids or fatty acid derivatives to specific locations and their potential role in health and disease.
Resumo:
Fat is a major contributor to energy intake in most Western diets, supplying 35–40% of food energy. It is described as being ‘energy-dense’, because a gram of fat (9 kcal/g) yields more than twice as much metabolisable energy as a gram of either carbohydrate or protein (4 kcal/g). Most of the fat we consume in our diet is in the form of triacylglycerol (90-95%), with cholesterol and phospholipids making up the bulk of the remainder. Dietary advice invariably stresses the importance of fat reduction, yet fats have diverse roles in human nutrition. They are important as a source of energy, both for immediate utilisation by the body and in laying down a storage depot (adipose tissue) for later utilisation when food intake is reduced, they act as a vehicle for the ingestion and absorption of fat-soluble vitamins, and they have diverse structural and functional roles in the body. Cholesterol is also an essential component of cell membranes and is the precursor for synthesis of hormones. This chapter describes the structure, digestion, transport and functional properties of dietary fat in the body and explains the basis of associations between fat consumption and chronic disease.
Resumo:
There has been continued and expanding recognition of probiotic approaches for treating gastrointestinal and systemic disease, as well as increased acceptance of probiotic therapies by both the public and the medical community. A parallel development has been the increasing recognition of the diverse roles that the normal gut microbiota plays in the normal biology of the host. This advance has in turn has been fed by implementation of novel investigative technologies and conceptual paradigms focused on understanding the fundamental role of the microbiota and indeed all commensal bacteria, on known and previously unsuspected aspects of host physiology in health and disease. This review discusses current advances in the study of the host-microbiota interaction, especially as it relates to potential mechanisms of probiotics. It is hoped these new approaches will allow more rational selection and validation of probiotic usage in a variety of clinical conditions.
Resumo:
T-type Ca2+ channels play diverse roles in tissues such as sensory neurons, vascular smooth muscle, and cancers, where increased expression of the cytoprotective enzyme, heme oxygenase-1 (HO-1) is often found. Here, we report regulation of T-type Ca2+ channels by carbon monoxide (CO) a HO-1 by-product. CO (applied as CORM-2) caused a concentration-dependent, poorly reversible inhibition of all T-type channel isoforms (Cav3.1-3.3, IC50 ∼3 μM) expressed in HEK293 cells, and native T-type channels in NG108-15 cells and primary rat sensory neurons. No recognized CO-sensitive signaling pathway could account for the CO inhibition of Cav3.2. Instead, CO sensitivity was mediated by an extracellular redox-sensitive site, which was also highly sensitive to thioredoxin (Trx). Trx depletion (using auranofin, 2-5 μM) reduced Cav3.2 currents and their CO sensitivity by >50% but increased sensitivity to dithiothreitol ∼3-fold. By contrast, Cav3.1 and Cav3.3 channels, and their sensitivity to CO, were unaffected in identical experiments. Our data propose a novel signaling pathway in which Trx acts as a tonic, endogenous regulator of Cav3.2 channels, while HO-1-derived CO disrupts this regulation, causing channel inhibition. CO modulation of T-type channels has widespread implications for diverse physiological and pathophysiological mechanisms, such as excitability, contractility, and proliferation
Resumo:
In many Sub-Saharan African countries, the care of chronically ill, disabled or elderly relatives is usually regarded as the responsibility of family members, within a broader landscape of often overburdened healthcare systems, the expense of medical fees, very limited access to social protection and policies that emphasise home-based care. Recent studies have demonstrated that children and youth, particularly girls and young women, take on considerable caring roles for chronically ill and elderly relatives in Africa. This article reviews the available research on young people’s caring roles and responsibilities within families affected by chronic illness and disability in Sub-Saharan Africa. I discuss how children’s caring roles challenge global and local constructions of childhood and suggest ways of conceptualising the socio-spatial and embodied dimensions of children’s everyday care work within diverse household forms. I analyse evidence on outcomes of care and children’s resilience in managing their caring responsibilities and examine the complex array of processes that influence whether children take on caring roles within the family. I argue that relational, intergenerational and lifecourse approaches to researching children’s caring responsibilities within the family have considerable potential for future geographical research and could provide further insights into the ways that care is embedded in social relations, cultural norms and structural inequalities operating in different configurations in particular places.
Resumo:
1. The habitat components determining the structure of bee communities are well known when considering foraging resources; however, there is little data with respect to the role of nesting resources. 2. As a model system this study uses 21 diverse bee communities in a Mediterranean landscape comprising a variety of habitats regenerating after fire. The findings clearly demonstrate that a variety of nesting substrates and nest building materials have key roles in organising the composition of bee communities. 3. The availability of bare ground and potential nesting cavities were the two primary factors influencing the structure of the entire bee community, the composition of guilds, and also the relative abundance of the dominant species. Other nesting resources shown to be important include availability of steep and sloping ground, abundance of plant species providing pithy stems, and the occurrence of pre-existing burrows. 4. Nesting resource availability and guild structure varied markedly across habitats in different stages of post-fire regeneration; however, in all cases, nest sites and nesting resources were important determinants of bee community structure.
Resumo:
Flavonoids are a diverse class of polyphenolic compounds that are produced as a result of plant secondary metabolism. They are known to play a multifunctional role in rhizospheric plant-microbe and plant-plant communication. Most familiar is their function as a signal in initiation of the legume-rhizobia symbiosis, but, flavonoids may also be signals in the establishment of arbuscular mycorrhizal symbiosis and are known agents in plant defence and in allelopathic interactions. Flavonoid perception by, and impact on, their microbial targets (e.g. rhizobia, plant pathogens) is relatively well characterized. However, potential impacts on 'non-target' rhizosphere inhabitants ('non-target' is used to distinguish those microorganisms not conventionally known as targets) have not been thoroughly investigated. Thus, this review first summarizes the conventional roles of flavonoids as nod gene inducers, phytoalexins and allelochemicals before exploring questions concerning 'non-target' impacts. We hypothesize that flavonoids act to shape rhizosphere microbial community structure because they represent a potential source of carbon and toxicity and that they impact on rhizosphere function, for example, by accelerating the biodegradation of xenobiotics. We also examine the reverse question, 'how do rhizosphere microbial communities impact on flavonoid signals?' The presence of microorganisms undoubtedly influences the quality and quantity of flavonoids present in the rhizosphere, both through modification of root exudation patterns and microbial catabolism of exudates. Microbial alteration and attenuation of flavonoid signals may have ecological consequences for below-ground plant-microbe and plant-plant interaction. We have a lack of knowledge concerning the composition, concentration and bioavailability of flavonoids actually experienced by microbes in an intact rhizosphere, but this may be addressed through advances in microspectroscopic and biosensor techniques. Through the use of plant mutants defective in flavonoid biosynthesis, we may also start to address the question of the significance of flavonoids in shaping rhizosphere community structure and function.
Resumo:
Standard form contracts are typically developed through a negotiated consensus, unless they are proffered by one specific interest group. Previously published plans of work and other descriptions of the processes in construction projects tend to focus on operational issues, or they tend to be prepared from the point of view of one or other of the dominant interest groups. Legal practice in the UK permits those who draft contracts to define their terms as they choose. There are no definitive rulings from the courts that give an indication as to the detailed responsibilities of project participants. The science of terminology offers useful guidance for discovering and describing terms and their meanings in their practical context, but has never been used for defining terms for responsibilities of participants in the construction project management process. Organizational analysis enables the management task to be deconstructed into its elemental parts in order that effective organizational structures can be developed. Organizational mapping offers a useful technique for reducing text-based descriptions of project management roles and responsibilities to a comparable basis. Research was carried out by means of a desk study, detailed analysis of nine plans of work and focus groups representing all aspects of the construction industry. No published plan of work offers definitive guidance. There is an enormous amount of variety in the way that terms are used for identifying responsibilities of project participants. A catalogue of concepts and terms (a “Terminology”) has been compiled and indexed to enable those who draft contracts to choose the most appropriate titles for project participants. The purpose of this terminology is to enable the selection and justification of appropriate terms in order to help define roles. The terminology brings an unprecedented clarity to the description of roles and responsibilities in construction projects and, as such, will be helpful for anyone seeking to assemble a team and specify roles for project participants.
Resumo:
This report forms part of a larger research programme on 'Reinterpreting the Urban-Rural Continuum', which conceptualises and investigates current knowledge and research gaps concerning 'the role that ecosystems services play in the livelihoods of the poor in regions undergoing rapid change'. The report aims to conduct a baseline appraisal of water-dependant ecosystem services, the roles they play within desakota livelihood systems and their potential sensitivity to climate change. The appraisal is conducted at three spatial scales: global, regional (four consortia areas), and meso scale (case studies within the four regions). At all three scales of analysis water resources form the interweaving theme because water provides a vital provisioning service for people, supports all other ecosystem processes and because water resources are forecast to be severely affected under climate change scenarios. This report, combined with an Endnote library of over 1100 scientific papers, provides an annotated bibliography of water-dependant ecosystem services, the roles they play within desakota livelihood systems and their potential sensitivity to climate change. After an introductory, section, Section 2 of the report defines water-related ecosystem services and how these are affected by human activities. Current knowledge and research gaps are then explored in relation to global scale climate and related hydrological changes (e.g. floods, droughts, flow regimes) (section 3). The report then discusses the impacts of climate changes on the ESPA regions, emphasising potential responses of biomes to the combined effects of climate change and human activities (particularly land use and management), and how these effects coupled with water store and flow regime manipulation by humans may affect the functioning of catchments and their ecosystem services (section 4). Finally, at the meso-scale, case studies are presented from within the ESPA regions to illustrate the close coupling of human activities and catchment performance in the context of environmental change (section 5). At the end of each section, research needs are identified and justified. These research needs are then amalgamated in section 6.
Resumo:
The cupin superfamily is a group of functionally diverse proteins that are found in all three kingdoms of life, Archaea, Eubacteria, and Eukaryota. These proteins have a characteristic signature domain comprising two histidine- containing motifs separated by an intermotif region of variable length. This domain consists of six beta strands within a conserved beta barrel structure. Most cupins, such as microbial phosphomannose isomerases (PMIs), AraC- type transcriptional regulators, and cereal oxalate oxidases (OXOs), contain only a single domain, whereas others, such as seed storage proteins and oxalate decarboxylases (OXDCs), are bi-cupins with two pairs of motifs. Although some cupins have known functions and have been characterized at the biochemical level, the majority are known only from gene cloning or sequencing projects. In this study, phylogenetic analyses were conducted on the conserved domain to investigate the evolution and structure/function relationships of cupins, with an emphasis on single- domain plant germin-like proteins (GLPs). An unrooted phylogeny of cupins from a wide spectrum of evolutionary lineages identified three main clusters, microbial PMIs, OXDCs, and plant GLPs. The sister group to the plant GLPs in the global analysis was then used to root a phylogeny of all available plant GLPs. The resulting phylogeny contained three main clades, classifying the GLPs into distinct subfamilies. It is suggested that these subfamilies correlate with functional categories, one of which contains the bifunctional barley germin that has both OXO and superoxide dismutase (SOD) activity. It is proposed that GLPs function primarily as SODs, enzymes that protect plants from the effects of oxidative stress. Closer inspection of the DNA sequence encoding the intermotif region in plant GLPs showed global conservation of thymine in the second codon position, a character associated with hydrophobic residues. Since many of these proteins are multimeric and enzymatically inactive in their monomeric state, this conservation of hydrophobicity is thought to be associated with the need to maintain the various monomer- monomer interactions. The type of structure-based predictive analysis presented in this paper is an important approach for understanding gene function and evolution in an era when genomes from a wide range of organisms are being sequenced at a rapid rate.