67 resultados para Distributed parameter systems
em CentAUR: Central Archive University of Reading - UK
Resumo:
Semiotics is the study of signs. Application of semiotics in information systems design is based on the notion that information systems are organizations within which agents deploy signs in the form of actions according to a set of norms. An analysis of the relationships among the agents, their actions and the norms would give a better specification of the system. Distributed multimedia systems (DMMS) could be viewed as a system consisted of many dynamic, self-controlled normative agents engaging in complex interaction and processing of multimedia information. This paper reports the work of applying the semiotic approach to the design and modeling of DMMS, with emphasis on using semantic analysis under the semiotic framework. A semantic model of DMMS describing various components and their ontological dependencies is presented, which then serves as a design model and implemented in a semantic database. Benefits of using the semantic database are discussed with reference to various design scenarios.
Resumo:
Multiple cooperating robot systems may be required to take up a closely coupled configuration in order to perform a task. An example is extended baseline stereo (EBS), requiring that two robots must establish and maintain for a certain period of time a constrained kinematic relationship to each other. In this paper we report on the development of a networked robotics framework for modular, distributed robot systems that supports the creation of such configurations. The framework incorporates a query mechanism to locate modules distributed across the two robot systems. The work presented in this paper introduces special mechanisms to model the kinematic constraint and its instantiation. The EBS configuration is used as a case study and experimental implementation to demonstrate the approach.
Resumo:
One among the most influential and popular data mining methods is the k-Means algorithm for cluster analysis. Techniques for improving the efficiency of k-Means have been largely explored in two main directions. The amount of computation can be significantly reduced by adopting geometrical constraints and an efficient data structure, notably a multidimensional binary search tree (KD-Tree). These techniques allow to reduce the number of distance computations the algorithm performs at each iteration. A second direction is parallel processing, where data and computation loads are distributed over many processing nodes. However, little work has been done to provide a parallel formulation of the efficient sequential techniques based on KD-Trees. Such approaches are expected to have an irregular distribution of computation load and can suffer from load imbalance. This issue has so far limited the adoption of these efficient k-Means variants in parallel computing environments. In this work, we provide a parallel formulation of the KD-Tree based k-Means algorithm for distributed memory systems and address its load balancing issue. Three solutions have been developed and tested. Two approaches are based on a static partitioning of the data set and a third solution incorporates a dynamic load balancing policy.
Resumo:
This article reviews current technological developments, particularly Peer-to-Peer technologies and Distributed Data Systems, and their value to community memory projects, particularly those concerned with the preservation of the cultural, literary and administrative data of cultures which have suffered genocide or are at risk of genocide. It draws attention to the comparatively good representation online of genocide denial groups and changes in the technological strategies of holocaust denial and other far-right groups. It draws on the author's work in providing IT support for a UK-based Non-Governmental Organization providing support for survivors of genocide in Rwanda.
Resumo:
Traditionally, applications and tools supporting collaborative computing have been designed only with personal computers in mind and support a limited range of computing and network platforms. These applications are therefore not well equipped to deal with network heterogeneity and, in particular, do not cope well with dynamic network topologies. Progress in this area must be made if we are to fulfil the needs of users and support the diversity, mobility, and portability that are likely to characterise group work in future. This paper describes a groupware platform called Coco that is designed to support collaboration in a heterogeneous network environment. The work demonstrates that progress in the p development of a generic supporting groupware is achievable, even in the context of heterogeneous and dynamic networks. The work demonstrates the progress made in the development of an underlying communications infrastructure, building on peer-to-peer concept and topologies to improve scalability and robustness.
Resumo:
Synchronous collaborative systems allow geographically distributed users to form a virtual work environment enabling cooperation between peers and enriching the human interaction. The technology facilitating this interaction has been studied for several years and various solutions can be found at present. In this paper, we discuss our experiences with one such widely adopted technology, namely the Access Grid [1]. We describe our experiences with using this technology, identify key problem areas and propose our solution to tackle these issues appropriately. Moreover, we propose the integration of Access Grid with an Application Sharing tool, developed by the authors. Our approach allows these integrated tools to utilise the enhanced features provided by our underlying dynamic transport layer.
Resumo:
The K-Means algorithm for cluster analysis is one of the most influential and popular data mining methods. Its straightforward parallel formulation is well suited for distributed memory systems with reliable interconnection networks. However, in large-scale geographically distributed systems the straightforward parallel algorithm can be rendered useless by a single communication failure or high latency in communication paths. This work proposes a fully decentralised algorithm (Epidemic K-Means) which does not require global communication and is intrinsically fault tolerant. The proposed distributed K-Means algorithm provides a clustering solution which can approximate the solution of an ideal centralised algorithm over the aggregated data as closely as desired. A comparative performance analysis is carried out against the state of the art distributed K-Means algorithms based on sampling methods. The experimental analysis confirms that the proposed algorithm is a practical and accurate distributed K-Means implementation for networked systems of very large and extreme scale.
Resumo:
The K-Means algorithm for cluster analysis is one of the most influential and popular data mining methods. Its straightforward parallel formulation is well suited for distributed memory systems with reliable interconnection networks, such as massively parallel processors and clusters of workstations. However, in large-scale geographically distributed systems the straightforward parallel algorithm can be rendered useless by a single communication failure or high latency in communication paths. The lack of scalable and fault tolerant global communication and synchronisation methods in large-scale systems has hindered the adoption of the K-Means algorithm for applications in large networked systems such as wireless sensor networks, peer-to-peer systems and mobile ad hoc networks. This work proposes a fully distributed K-Means algorithm (EpidemicK-Means) which does not require global communication and is intrinsically fault tolerant. The proposed distributed K-Means algorithm provides a clustering solution which can approximate the solution of an ideal centralised algorithm over the aggregated data as closely as desired. A comparative performance analysis is carried out against the state of the art sampling methods and shows that the proposed method overcomes the limitations of the sampling-based approaches for skewed clusters distributions. The experimental analysis confirms that the proposed algorithm is very accurate and fault tolerant under unreliable network conditions (message loss and node failures) and is suitable for asynchronous networks of very large and extreme scale.
Resumo:
An important application of Big Data Analytics is the real-time analysis of streaming data. Streaming data imposes unique challenges to data mining algorithms, such as concept drifts, the need to analyse the data on the fly due to unbounded data streams and scalable algorithms due to potentially high throughput of data. Real-time classification algorithms that are adaptive to concept drifts and fast exist, however, most approaches are not naturally parallel and are thus limited in their scalability. This paper presents work on the Micro-Cluster Nearest Neighbour (MC-NN) classifier. MC-NN is based on an adaptive statistical data summary based on Micro-Clusters. MC-NN is very fast and adaptive to concept drift whilst maintaining the parallel properties of the base KNN classifier. Also MC-NN is competitive compared with existing data stream classifiers in terms of accuracy and speed.
Resumo:
Epidemic protocols are a bio-inspired communication and computation paradigm for extreme-scale network system based on randomized communication. The protocols rely on a membership service to build decentralized and random overlay topologies. In a weakly connected overlay topology, a naive mechanism of membership protocols can break the connectivity, thus impairing the accuracy of the application. This work investigates the factors in membership protocols that cause the loss of global connectivity and introduces the first topology connectivity recovery mechanism. The mechanism is integrated into the Expander Membership Protocol, which is then evaluated against other membership protocols. The analysis shows that the proposed connectivity recovery mechanism is effective in preserving topology connectivity and also helps to improve the application performance in terms of convergence speed.
Resumo:
Distributed computing paradigms for sharing resources such as Clouds, Grids, Peer-to-Peer systems, or voluntary computing are becoming increasingly popular. While there are some success stories such as PlanetLab, OneLab, BOINC, BitTorrent, and SETI@home, a widespread use of these technologies for business applications has not yet been achieved. In a business environment, mechanisms are needed to provide incentives to potential users for participating in such networks. These mechanisms may range from simple non-monetary access rights, monetary payments to specific policies for sharing. Although a few models for a framework have been discussed (in the general area of a "Grid Economy"), none of these models has yet been realised in practice. This book attempts to fill this gap by discussing the reasons for such limited take-up and exploring incentive mechanisms for resource sharing in distributed systems. The purpose of this book is to identify research challenges in successfully using and deploying resource sharing strategies in open-source and commercial distributed systems.
Resumo:
An algorithm for solving nonlinear discrete time optimal control problems with model-reality differences is presented. The technique uses Dynamic Integrated System Optimization and Parameter Estimation (DISOPE), which achieves the correct optimal solution in spite of deficiencies in the mathematical model employed in the optimization procedure. A version of the algorithm with a linear-quadratic model-based problem, implemented in the C+ + programming language, is developed and applied to illustrative simulation examples. An analysis of the optimality and convergence properties of the algorithm is also presented.