38 resultados para Distributed energy resource scheduling
em CentAUR: Central Archive University of Reading - UK
Resumo:
Converting waste cooking oil into biofuel represents a three-win solution, dealing simultaneously with food security, pollution, and energy security. In this paper, we encode the policy documents of waste cooking oil refining biofuel in China based on content analysis, and explore the related policies from the two dimensions as basic policy tools and enterprises supply chain. Research indicates the weak institution coordination of policy issuing entities. Also, the findings show that tools of regulatory control and goal planning are overused. Policies of government procurement, outsourcing and biofuel consumption are relatively scarce. Generally, government focuses more on formulating policies from the strategic, administrative and regulatory aspects, while less on market-oriented initiatives as funding input and financial support.
Resumo:
This paper examines some of the normative aspects of community energy programmes — defined here as decentralized forms of energy production and distributed energy technologies where production decisions are made as close as possible to sources of consumption. Such projects might also display a degree of separation from the formal political process. The development of a community energy system often generates a great deal of debate about both the degree of public support for such programmes and the values around which programmes ought to be organized. Community energy programmes also raise important issues regarding the energy choice problem, including questions of process, that is, by whom a project is developed and the influence of both community and exogenous actors, as well as certain outcome issues regarding the spatial and social distribution of energy. The case studies, drawn from community energy programmes in both the United States and the United Kingdom, allow for a careful examination of all of these factors, considering in particular the complex interplay and juxtaposition between the ideas of 'public value' and 'public values'.
Resumo:
Two unique large buildings in the Kingdom of Bahrain were selected for make-over to sustainable buildings. These are the Almoayyed Tower (the first sky scraper) and the Bahrain International Circuit, BIC (The best world Formula 1 Circuit). The amount of electricity extracted from using renewable energy resource (solar and wind), integrated to the buildings-has been studied thoroughly. For the first building, the total solar electricity from the PV installed at the roof and the 4 vertical facades was found 3 017 500 kWh annually (3 million kWh), i.e. daily energy of 8219 kWh (enough to Supply electricity for 171 houses, each is rated as 2 kW house-in Europe the standard is 1.2 kW). This means that the annual solar electricity produced will be nearly 3 million kWh. This correspond to annual CO, reduction of 3000 t (assuming each kWh of energy from natural gas lead to emission of 1 kg of CO2). For the second building (BIC) the solar electricity from PV panels installed at the roof top, fixed at tilt angle of 26 degrees facing south, will provide annual solar electricity of is 2.8 x 10(6) kWh. The solar electricity from PV panels installed on the windows (12,000 m(2)) will be 45.3 x 10(6) kWh. This means that the total annual electrical power from PV panels (windows and roofs) will be nearly 12 MW (32 kW per day). The CO2 reduction will be 48,000 t. Under the carbon trading or CDM scheme the revenue (or the reward) would be (sic)480,000 million annually (the reward is (sic)10 per tonnes of CO2). The BIC circuit can have diversified electricity supply, i.e. from solar radiation (PV), from solar heat (CSP) and from wind (wind turbines), assuring its sustainability as well as reducing the CO2 emission.
Resumo:
The Complex Adaptive Systems, Cognitive Agents and Distributed Energy (CASCADE) project is developing a framework based on Agent Based Modelling (ABM). The CASCADE Framework can be used both to gain policy and industry relevant insights into the smart grid concept itself and as a platform to design and test distributed ICT solutions for smart grid based business entities. ABM is used to capture the behaviors of diff erent social, economic and technical actors, which may be defi ned at various levels of abstraction. It is applied to understanding their interactions and can be adapted to include learning processes and emergent patterns. CASCADE models ‘prosumer’ agents (i.e., producers and/or consumers of energy) and ‘aggregator’ agents (e.g., traders of energy in both wholesale and retail markets) at various scales, from large generators and Energy Service Companies down to individual people and devices. The CASCADE Framework is formed of three main subdivisions that link models of electricity supply and demand, the electricity market and power fl ow. It can also model the variability of renewable energy generation caused by the weather, which is an important issue for grid balancing and the profi tability of energy suppliers. The development of CASCADE has already yielded some interesting early fi ndings, demonstrating that it is possible for a mediating agent (aggregator) to achieve stable demandfl attening across groups of domestic households fi tted with smart energy control and communication devices, where direct wholesale price signals had previously been found to produce characteristic complex system instability. In another example, it has demonstrated how large changes in supply mix can be caused even by small changes in demand profi le. Ongoing and planned refi nements to the Framework will support investigation of demand response at various scales, the integration of the power sector with transport and heat sectors, novel technology adoption and diffusion work, evolution of new smart grid business models, and complex power grid engineering and market interactions.
Resumo:
In this paper, we develop an energy-efficient resource-allocation scheme with proportional fairness for downlink multiuser orthogonal frequency-division multiplexing (OFDM) systems with distributed antennas. Our aim is to maximize energy efficiency (EE) under the constraints of the overall transmit power of each remote access unit (RAU), proportional fairness data rates, and bit error rates (BERs). Because of the nonconvex nature of the optimization problem, obtaining the optimal solution is extremely computationally complex. Therefore, we develop a low-complexity suboptimal algorithm, which separates subcarrier allocation and power allocation. For the low-complexity algorithm, we first allocate subcarriers by assuming equal power distribution. Then, by exploiting the properties of fractional programming, we transform the nonconvex optimization problem in fractional form into an equivalent optimization problem in subtractive form, which includes a tractable solution. Next, an optimal energy-efficient power-allocation algorithm is developed to maximize EE while maintaining proportional fairness. Through computer simulation, we demonstrate the effectiveness of the proposed low-complexity algorithm and illustrate the fundamental trade off between energy and spectral-efficient transmission designs.
Resumo:
In molecular biology, it is often desirable to find common properties in large numbers of drug candidates. One family of methods stems from the data mining community, where algorithms to find frequent graphs have received increasing attention over the past years. However, the computational complexity of the underlying problem and the large amount of data to be explored essentially render sequential algorithms useless. In this paper, we present a distributed approach to the frequent subgraph mining problem to discover interesting patterns in molecular compounds. This problem is characterized by a highly irregular search tree, whereby no reliable workload prediction is available. We describe the three main aspects of the proposed distributed algorithm, namely, a dynamic partitioning of the search space, a distribution process based on a peer-to-peer communication framework, and a novel receiverinitiated load balancing algorithm. The effectiveness of the distributed method has been evaluated on the well-known National Cancer Institute’s HIV-screening data set, where we were able to show close-to linear speedup in a network of workstations. The proposed approach also allows for dynamic resource aggregation in a non dedicated computational environment. These features make it suitable for large-scale, multi-domain, heterogeneous environments, such as computational grids.
Resumo:
Communities of nectar-producing plants show high spatio-temporal variation in the patterns of volume and concentration presentation. We illustrate a novel approach for quantifying nectar reward structures in complex communities, demonstrating that nectar resource diversity (defined as the variety of nectar volume-concentration combinations available) may be a fundamental factor organising nectarivore communities. In a series of diverse bee and entomophilous flower communities in Israel, our measure of nectar resource diversity alone explains the majority of variation in bee species richness, while other nectar variables (volume, concentration, energy value, and water content) have little predictive value per se. The new measure of nectar resource diversity is highly correlated with floral species richness and particularly with the species richness of annuals, yet it is additive in its effect on bee diversity. We conclude that relying solely upon measurements of mean nectar volume and mean nectar concentration overlooks a key characteristic of community-level reward structure, nectar resource diversity, so that previous studies may have failed to identify an important determinant of flower-visitor community structure.
Resumo:
Distributed computing paradigms for sharing resources such as Clouds, Grids, Peer-to-Peer systems, or voluntary computing are becoming increasingly popular. While there are some success stories such as PlanetLab, OneLab, BOINC, BitTorrent, and SETI@home, a widespread use of these technologies for business applications has not yet been achieved. In a business environment, mechanisms are needed to provide incentives to potential users for participating in such networks. These mechanisms may range from simple non-monetary access rights, monetary payments to specific policies for sharing. Although a few models for a framework have been discussed (in the general area of a "Grid Economy"), none of these models has yet been realised in practice. This book attempts to fill this gap by discussing the reasons for such limited take-up and exploring incentive mechanisms for resource sharing in distributed systems. The purpose of this book is to identify research challenges in successfully using and deploying resource sharing strategies in open-source and commercial distributed systems.
Resumo:
In order to organize distributed educational resources efficiently, to provide active learners an integrated, extendible and cohesive interface to share the dynamically growing multimedia learning materials on the Internet, this paper proposes a generic resource organization model with semantic structures to improve expressiveness, scalability and cohesiveness. We developed an active learning system with semantic support for learners to access and navigate through efficient and flexible manner. We learning resources in an efficient and flexible manner. We provide facilities for instructors to manipulate the structured educational resources via a convenient visual interface. We also developed a resource discovering and gathering engine based on complex semantic associations for several specific topics.
Resumo:
Resource monitoring in distributed systems is required to understand the 'health' of the overall system and to help identify particular problems, such as dysfunctional hardware, a faulty, system or application software. Desirable characteristics for monitoring systems are the ability to connect to any number of different types of monitoring agents and to provide different views of the system, based on a client's particular preferences. This paper outlines and discusses the ongoing activities within the GridRM wide-area resource-monitoring project.
Resumo:
This paper analyzes the performance of Enhanced relay-enabled Distributed Coordination Function (ErDCF) for wireless ad hoc networks under transmission errors. The idea of ErDCF is to use high data rate nodes to work as relays for the low data rate nodes. ErDCF achieves higher throughput and reduces energy consumption compared to IEEE 802.11 Distributed Coordination Function (DCF) in an ideal channel environment. However, there is a possibility that this expected gain may decrease in the presence of transmission errors. In this work, we modify the saturation throughput model of ErDCF to accurately reflect the impact of transmission errors under different rate combinations. It turns out that the throughput gain of ErDCF can still be maintained under reasonable link quality and distance.
Resumo:
In this paper we evaluate the performance of our earlier proposed enhanced relay-enabled distributed coordination function (ErDCF) for wireless ad hoc networks. The idea of ErDCF is to use high data rate nodes to work as relays for the low data rate nodes. ErDCF achieves higher throughput and reduced energy consumption compared to IEEE 802.11 distributed coordination function (DCF). This is a result of. 1) using relay which helps to increase the throughput and lower overall blocking time of nodes due to faster dual-hop transmission, 2) using dynamic preamble (i.e. using short preamble for the relay transmission) which further increases the throughput and lower overall blocking time and also by 3) reducing unnecessary overhearing (by other nodes not involved in transmission). We evaluate the throughput and energy performance of the ErDCF with different rate combinations. ErDCF (11,11) (ie. R1=R2=11 Mbps) yields a throughput improvement of 92.9% (at the packet length of 1000 bytes) and an energy saving of 72.2% at 50 nodes.
Resumo:
To enhance the throughput of ad hoc networks, dual-hop relay-enabled transmission schemes have recently been proposed. Since in ad hoc networks throughput is normally related to their energy consumption, it is important to examine the impact of using relay-enabled transmissions on energy consumption. In this paper, we present an analytical energy consumption model for dual-hop relay-enabled medium access control (MAC) protocols. Based on the recently reported relay-enabled distributed coordination function (rDCF), we have shown the efficacy of the proposed analytical model. This is a generalized model and can be used to predict energy consumption in saturated relay-enabled ad hoc networks via energy decomposition. This is helpful in designing MAC protocols for cooperative communications and it is shown that using a relay results not only in a better throughput but also better energy efficiency.
Resumo:
This paper analyzes the performance of enhanced relay-enabled distributed coordination function (ErDCF) for wireless ad hoc networks under transmission errors. The idea of ErDCF is to use high data rate nodes to work as relays for the low data rate nodes. ErDCF achieves higher throughput and reduces energy consumption compared to IEEE 802.11 distributed coordination function (DCF) in an ideal channel environment. However, there is a possibility that this expected gain may decrease in the presence of transmission errors. In this work, we modify the saturation throughput model of ErDCF to accurately reflect the impact of transmission errors under different rate combinations. It turns out that the throughput gain of ErDCF can still be maintained under reasonable link quality and distance.