10 resultados para Distributed Material Flow Control
em CentAUR: Central Archive University of Reading - UK
Resumo:
This article presents an experimental scalable message driven IoT and its security architecture based on Decentralized Information Flow Control. The system uses a gateway that exports SoA (REST) interfaces to the internet simplifying external applications whereas uses DIFC and asynchronous messaging within the home environment.
Resumo:
Smooth flow of production in construction is hampered by disparity between individual trade teams' goals and the goals of stable production flow for the project as a whole. This is exacerbated by the difficulty of visualizing the flow of work in a construction project. While the addresses some of the issues in Building information modeling provides a powerful platform for visualizing work flow in control systems that also enable pull flow and deeper collaboration between teams on and off site. The requirements for implementation of a BIM-enabled pull flow construction management software system based on the Last Planner System™, called ‘KanBIM’, have been specified, and a set of functional mock-ups of the proposed system has been implemented and evaluated in a series of three focus group workshops. The requirements cover the areas of maintenance of work flow stability, enabling negotiation and commitment between teams, lean production planning with sophisticated pull flow control, and effective communication and visualization of flow. The evaluation results show that the system holds the potential to improve work flow and reduce waste by providing both process and product visualization at the work face.
Resumo:
Experimental wind tunnel and smoke visualisation testing and CFD modelling were conducted to investigate the effect of air flow control mechanism and heat source inside rooms on wind catchers/towers performance. For this purpose, a full-scale wind catcher was connected to a test room and positioned centrally in an open boundary wind tunnel. Pressure coefficients (C-p's) around the wind catcher and air flow into the test room were established. The performance of the wind catcher depends greatly on the wind speed and direction. The incorporation of dampers and egg crate grille at ceiling level reduces and regulates the air flow rate with an average pressure loss coefficient of 0.01. The operation of the wind catcher in the presence of heat sources will potentially lower the internal temperatures in line with the external temperatures.
Resumo:
The results from applying a sensor fusion process to an adaptive controller used to balance all inverted pendulum axe presented. The goal of the sensor fusion process was to replace some of the four mechanical measurements, which are known to be sufficient inputs for a linear state feedback controller to balance the system, with optic flow variables. Results from research into the psychology of the sense of balance in humans were the motivation for the investigation of this new type of controller input. The simulated model of the inverted pendulum and the virtual reality environments used to provide the optical input are described. The successful introduction of optical information is found to require the preservation of at least two of the traditional input types and entail increased training till-le for the adaptive controller and reduced performance (measured as the time the pendulum remains upright)
Resumo:
This paper describes a region-based algorithm for deriving a concise description of a first order optical flow field. The algorithm described achieves performance improvements over existing algorithms without compromising the accuracy of the flow field values calculated. These improvements are brought about by not computing the entire flow field between two consecutive images, but by considering only the flow vectors of a selected subset of the images. The algorithm is presented in the context of a project to balance a bipedal robot using visual information.
Resumo:
Where users are interacting in a distributed virtual environment, the actions of each user must be observed by peers with sufficient consistency and within a limited delay so as not to be detrimental to the interaction. The consistency control issue may be split into three parts: update control; consistent enactment and evolution of events; and causal consistency. The delay in the presentation of events, termed latency, is primarily dependent on the network propagation delay and the consistency control algorithms. The latency induced by the consistency control algorithm, in particular causal ordering, is proportional to the number of participants. This paper describes how the effect of network delays may be reduced and introduces a scalable solution that provides sufficient consistency control while minimising its effect on latency. The principles described have been developed at Reading over the past five years. Similar principles are now emerging in the simulation community through the HLA standard. This paper attempts to validate the suggested principles within the schema of distributed simulation and virtual environments and to compare and contrast with those described by the HLA definition documents.
Resumo:
Previous studies have shown that the human posterior cingulate contains a visual processing area selective for optic flow (CSv). However, other studies performed in both humans and monkeys have identified a somatotopic motor region at the same location (CMA). Taken together, these findings suggested the possibility that the posterior cingulate contains a single visuomotor integration region. To test this idea we used fMRI to identify both visual and motor areas of the posterior cingulate in the same brains and to test the activity of those regions during a visuomotor task. Results indicated that rather than a single visuomotor region the posterior cingulate contains adjacent but separate motor and visual regions. CSv lies in the fundus of the cingulate sulcus, while CMA lies in the dorsal bank of the sulcus, slightly superior in terms of stereotaxic coordinates. A surprising and novel finding was that activity in CSv was suppressed during the visuomotor task, despite the visual stimulus being identical to that used to localize the region. This may provide an important clue to the specific role played by this region in the utilization of optic flow to control self-motion.