39 resultados para Distance between plants
em CentAUR: Central Archive University of Reading - UK
Resumo:
This research examines the influence of environmental institutional distance between home and host countries on the standardization of environmental performance among multinational enterprises using ordinary least-squares (OLS) regression techniques and a sample of 128 multinationals from high-polluting industries. The paper examines the environmental institutional distance of countries using the concepts of formal and informal institutional distances. The results show that whereas a high formal environmental distance between home and host countries leads multinational enterprises to achieve a different level of environmental performance according to each country's legal requirements, a high informal environmental distance encourages these firms to unify their environmental performance independently of the countries in which their units are based. The study also discusses the implications for academia, managers, and policy makers.
Resumo:
The distribution of nutrients and assimilates in different organs and tissues is in a constant state of flux throughout the growth and development of a plant. At key stages during the life cycle profound changes occur, and perhaps one of the most critical of these is during seed filling. By restricting the competition for reserves in Arabidopsis plants, the ability to manipulate seed size, seed weight, or seed content has been explored. Removal of secondary inflorescences and lateral branches resulted in a stimulation of elongation of the primary inflorescence and an increase in the distance between siliques. The pruning treatment also led to the development of longer and larger siliques that contained fewer, bigger seeds. This seems to be a consequence of a reduction in the number of ovules that develop and an increase in the fatty acid content of the seeds that mature. The data show that shoot architecture could have a substantial impact on the partitioning of reserves between vegetative and reproductive tissues and could be an important trait for selection in rapid phenotyping screens to optimize crop performance.
Resumo:
The transcriptome of an organism is its set of gene transcripts (mRNAs) at a defined spatial and temporal locus. Because gene expression is affected markedly by environmental and developmental perturbations, it is widely assumed that transcriptome divergence among taxa represents adaptive phenotypic selection. This assumption has been challenged by neutral theories which propose that stochastic processes drive transcriptome evolution. To test for evidence of neutral transcriptome evolution in plants, we quantified 18 494 gene transcripts in nonsenescent leaves of 14 taxa of Brassicaceae using robust cross-species transcriptomics which includes a two-step physical and in silico-based normalization procedure based on DNA similarity among taxa. Transcriptome divergence correlates positively with evolutionary distance between taxa and with variation in gene expression among samples. Results are similar for pseudogenes and chloroplast genes evolving at different rates. Remarkably, variation in transcript abundance among root-cell samples correlates positively with transcriptome divergence among root tissues and among taxa. Because neutral processes affect transcriptome evolution in plants, many differences in gene expression among or within taxa may be nonfunctional, reflecting ancestral plasticity and founder effects. Appropriate null models are required when comparing transcriptomes in space and time.
Resumo:
We propose a novel method for scoring the accuracy of protein binding site predictions – the Binding-site Distance Test (BDT) score. Recently, the Matthews Correlation Coefficient (MCC) has been used to evaluate binding site predictions, both by developers of new methods and by the assessors for the community wide prediction experiment – CASP8. Whilst being a rigorous scoring method, the MCC does not take into account the actual 3D location of the predicted residues from the observed binding site. Thus, an incorrectly predicted site that is nevertheless close to the observed binding site will obtain an identical score to the same number of nonbinding residues predicted at random. The MCC is somewhat affected by the subjectivity of determining observed binding residues and the ambiguity of choosing distance cutoffs. By contrast the BDT method produces continuous scores ranging between 0 and 1, relating to the distance between the predicted and observed residues. Residues predicted close to the binding site will score higher than those more distant, providing a better reflection of the true accuracy of predictions. The CASP8 function predictions were evaluated using both the MCC and BDT methods and the scores were compared. The BDT was found to strongly correlate with the MCC scores whilst also being less susceptible to the subjectivity of defining binding residues. We therefore suggest that this new simple score is a potentially more robust method for future evaluations of protein-ligand binding site predictions.
Resumo:
Phytophthora ramorum is a damaging invasive plant pathogen and was first discovered in the UK in 2002. Spatial point analyses were applied to the occurrence of this disease in England and Wales during the period of 2003-2006 in order to assess its spatio-temporal spread. Out of the 4301 garden centres and nurseries (GCN) surveyed, there were 164, 105, 123 and 41 sites with P. ramorum in 2003, 2004, 2005 and 2006, respectively. Spatial analysis of the observed point patterns of GCN outbreaks suggested that these sites were significantly clumped within a radius of ca 60 km in 2003, but not in later years. Further analyses were conducted to determine the relationship of GCN outbreak sites over two consecutive years and thus to infer possible disease spread over time. This analysis suggested that disease spread among GCN sites was most likely to have occurred within a distance of 60 km for 2003-2004, but not for the later years. There were 35, 63, 81 and 58 sites with P. ramorum in the semi-natural environment (SNE). Analyses were carried out to assess whether infected GCN sites could act as an inoculum source of infected SNE plants or vice versa. In all years, there was a significant spatial closeness among GCN and SNE outbreak sites within a distance of 1 km. But a significant relationship over a longer distance (within 60 km) was only observed between cases in 2003 and 2004. These analyses suggest that statutory actions taken so far appear to have reduced the extent of long-distance spread of P. ramorum among garden centres and nurseries, but not the disease spread at a shorter distance between GCN and SNE sites.
Resumo:
[15-(CH3)-C-13-H-2]-dihydroartemisinic acid (2a) and [15-(CH3)-H-2]-dihydroartemisinic acid (2b) have been fed via the root to intact Artemisia annua plants and their transformations studied in vivo by one-dimensional H-2 NMR spectroscopy and two-dimensional, C-13-H-2 correlation NMR spectroscopy (C-13-(2) H COSY). Labelled dihydroartemisinic acid was transformed into 16 12-carboxy-amorphane and cadinane sesquiterpenes within a few days in the aerial parts of A. annua, although transformations in the root were much slower and more limited. Fifteen of these 16 metabolites have been reported previously as natural products from A. annua. Evidence is presented that the first step in the transformation of dihydroartemisinic acid in vivo is the formation of allylic hydroperoxides by the reaction of molecular oxygen with the Delta(4,5)-double bond in this compound. The origin of all 16 secondary metabolites might then be explained by the known further reactions of such hydroperoxides. The qualitative pattern for the transformations of dihydroartemisinic acid in vivo was essentially unaltered when a comparison was made between plants, which had been kept alive and plants which were allowed to die after feeding of the labelled precursor. This, coupled with the observation that the pattern of transformations of 2 in vivo demonstrated very close parallels with the spontaneous autoxidation chemistry for 2, which we have recently demonstrated in vitro, has lead us to conclude that the main 'metabolic route' for dihydroartemisinic acid in A. annua involves its spontaneous autoxidation and the subsequent spontaneous reactions of allylic hydroperoxides which are derived from 2. There may be no need to invoke the participation of enzymes in any of the later biogenetic steps leading to all 16 of the labelled 11,13-dihydro-amorphane sesquiterpenes which are found in A. annua as natural products. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Perceptual grouping is a pre-attentive process which serves to group local elements into global wholes, based on shared properties. One effect of perceptual grouping is to distort the ability to estimate the distance between two elements. In this study, biases in distance estimates, caused by four types of perceptual grouping, were measured across three tasks, a perception, a drawing and a construction task in both typical development (TD: Experiment 1) and in individuals with Williams syndrome (WS: Experiment 2). In Experiment 1, perceptual grouping distorted distance estimates across all three tasks. Interestingly, the effect of grouping by luminance was in the opposite direction to the effects of the remaining grouping types. We relate this to differences in the ability to inhibit perceptual grouping effects on distance estimates. Additive distorting influences were also observed in the drawing and the construction task, which are explained in terms of the points of reference employed in each task. Experiment 2 demonstrated that the above distortion effects are also observed in WS. Given the known deficit in the ability to use perceptual grouping in WS, this suggests a dissociation between the pre-attentive influence of and the attentive deployment of perceptual grouping in WS. The typical distortion in relation to drawing and construction points towards the presence of some typical location coding strategies in WS. The performance of the WS group differed from the TD participants on two counts. First, the pattern of overall distance estimates (averaged across interior and exterior distances) across the four perceptual grouping types, differed between groups. Second, the distorting influence of perceptual grouping was strongest for grouping by shape similarity in WS, which contrasts to a strength in grouping by proximity observed in the TD participants. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
This article combines institutional and resources’ arguments to show that the institutional distance between the home and the host country, and the headquarters’ financial performance have a relevant impact on the environmental standardization decision in multinational companies. Using a sample of 135 multinational companies in three different industries with headquarters and subsidiaries based in the USA, Canada, Mexico, France, and Spain, we find that a high environmental institutional distance between headquarters’ and subsidiaries’ countries deters the standardization of environmental practices. On the other hand, high-profit headquarters are willing to standardize their environmental practices, rather than taking advantage of countries with lax environmental protection to undertake more pollution-intensive activities. Finally, we show that headquarters’ financial performance also imposes a moderating effect on the relationship between environmental institutional distance between countries and environmental standardization within the multinational company.
Resumo:
Small propagules like pollen or fungal spores may be dispersed by the wind over distances of hundreds or thousands of kilometres,even though the median dispersal may be only a few metres. Such long-distance dispersal is a stochastic event which may be exceptionally important in shaping a population. It has been found repeatedly in field studies that subpopulations of wind-dispersed fungal pathogens virulent on cultivars with newly introduced, effective resistance genes are dominated by one or very few genotypes. The role of propagule dispersal distributions with distinct behaviour at long distances in generating this characteristic population structure was studied by computer simulation of dispersal of clonal organisms in a heterogeneous environment with fields of unselective and selective hosts. Power-law distributions generated founder events in which new, virulent genotypes rapidly colonized fields of resistant crop varieties and subsequently dominated the pathogen population on both selective and unselective varieties, in agreement with data on rust and powdery mildew fungi. An exponential dispersal function, with extremely rare dispersal over long distances, resulted in slower colonization of resistant varieties by virulent pathogens or even no colonization if the distance between susceptible source and resistant target fields was sufficiently large. The founder events resulting from long-distance dispersal were highly stochastic and exact quantitative prediction of genotype frequencies will therefore always be difficult.
Resumo:
Previous research suggests that the processing of agreement is affected by the distance between the agreeing elements. However, the unique contribution of structural distance (number of intervening syntactic phrases) to the processing of agreement remains an open question, since previous investigations do not tease apart structural and linear distance (number of intervening words). We used event related potentials (ERPs) to examine the extent to which structural distance impacts the processing of Spanish number and gender agreement. Violations were realized both within the phrase and across the phrase. Across both levels of structural distance, linear distance was kept constant, as was the syntactic category of the agreeing elements. Number and gender agreement violations elicited a robust P600 between 400 and 900ms, a component associated with morphosyntactic processing. No amplitude differences were observed between number and gender violations, suggesting that the two features are processed similarly at the brain level. Within-phrase agreement yielded more positive waveforms than across-phrase agreement, both for agreement violations and for grammatical sentences (no agreement by distance interaction). These effects can be interpreted as evidence that structural distance impacts the establishment of agreement overall, consistent with sentence processing models which predict that hierarchical structure impacts the processing of syntactic dependencies. However, due to the lack of an agreement by distance interaction, the possibility cannot be ruled out that these effects are driven by differences in syntactic predictability between the within-phrase and across-phrase configurations, notably the fact that the syntactic category of the critical word was more predictable in the within-phrase conditions.
Resumo:
To determine the effects of defoliation on microbial community structure, rhizosphere soil samples were taken pre-, and post-defoliation from the root tip and mature root regions of Trifolium repens L. and Lolium perenne L. Microbial DNA isolated from samples was used to generate polymerase chain reaction-denaturing gradient gel electrophoresis molecular profiles of bacterial and fungal communities. Bacterial plate counts were also obtained. Neither plant species nor defoliation affected the bacterial and fungal community structures in both the root tip and mature root regions, but there were significant differences in the bacterial and fungal community profiles between the two root regions for each plant. Prior to defoliation, there was no difference between plants for bacterial plate counts of soils from the root tip regions; however, counts were greater in the mature root region of L. perenne than T. repens. Bacterial plate counts for T. repens were higher in the root tip than the mature root region. After defoliation, there was no effect of plant type, position along the root or defoliation status on bacterial plate counts, although there were significant increases in bacterial plate counts with time. The results indicate that a general effect existed during maturation in the root regions of each plant, which had a greater impact on microbial community structure than either plant type or the effect of defoliation. In addition there were no generic consequences with regard to microbial populations in the rhizosphere as a response to plant defoliation.
Resumo:
Long distance dispersal (LDD) plays an important role in many population processes like colonization, range expansion, and epidemics. LDD of small particles like fungal spores is often a result of turbulent wind dispersal and is best described by functions with power-law behavior in the tails ("fat tailed"). The influence of fat-tailed LDD on population genetic structure is reported in this article. In computer simulations, the population structure generated by power-law dispersal with exponents in the range of -2 to -1, in distinct contrast to that generated by exponential dispersal, has a fractal structure. As the power-law exponent becomes smaller, the distribution of individual genotypes becomes more self-similar at different scales. Common statistics like G(ST) are not well suited to summarizing differences between the population genetic structures. Instead, fractal and self-similarity statistics demonstrated differences in structure arising from fat-tailed and exponential dispersal. When dispersal is fat tailed, a log-log plot of the Simpson index against distance between subpopulations has an approximately constant gradient over a large range of spatial scales. The fractal dimension D-2 is linearly inversely related to the power-law exponent, with a slope of similar to -2. In a large simulation arena, fat-tailed LDD allows colonization of the entire space by all genotypes whereas exponentially bounded dispersal eventually confines all descendants of a single clonal lineage to a relatively small area.
Resumo:
Greenhouse cladding materials are a major component in the design of energy efficient greenhouses. The optical properties of cladding materials determine a major part of the overall performance of a greenhouse both in terms of the energy balance of the greenhouse and on crop behavior. Various film plastic greenhouse-cladding materials were measured under laboratory conditions using a spectroradiometer equipped with an integrating sphere. Films were measured over a range of angles of incidence and the effect of increasing distance between double films was also measured. PAR transmission remained nearly constant for angles of incidence increased up to 30 degrees but fell rapidly thereafter as the angles of incidence increased up to 90 degrees. Increasing distance between double films did not significantly affect PAR transmission in all films examined. These results are discussed in relation to the design criteria for an energy efficient greenhouse.
Resumo:
We present a combined quantitative low-energy electron diffraction (LEED) and density-functional theory (DFT) study of the chiral Cu{531} surface. The surface shows large inward relaxations with respect to the bulk interlayer distance of the first two layers and a large expansion of the distance between the fourth and fifth layers. (The latter is the first layer having the same coordination as the Cu atoms in the bulk.) Additional calculations have been performed to study the likelihood of faceting by comparing surface energies of possible facet terminations. No overall significant reduction in energy with respect to planar {531} could be found for any of the tested combinations of facets, which is in agreement with the experimental findings.
Resumo:
If people monitor a visual stimulus stream for targets they often miss the second (T2) if it appears soon after the first (T1)-the attentional blink. There is one exception: T2 is often not missed if it appears right after T1, i.e., at lag 1. This lag-l sparing is commonly attributed to the possibility that T1 processing opens an attentional gate, which may be so sluggish that an early T2 can slip in before it closes. We investigated why the gate may close and exclude further stimuli from processing. We compared a control approach, which assumes that gate closing is exogenously triggered by the appearance of nontargets, and an integration approach, which assumes that gate closing is under endogenous control. As predicted by the latter but not the former, T2 performance and target reversals were strongly affected by the temporal distance between T1 and T2, whereas the presence or the absence of a nontarget intervening between T1 and T2 had little impact. (c) 2005 Elsevier B.V. All rights reserved.