22 resultados para Discrete Mathematics Learning
em CentAUR: Central Archive University of Reading - UK
Resumo:
An improved sum-product estimate for subsets of a finite field whose order is not prime is provided. It is shown, under certain conditions, that max{∣∣∣A+A∣∣∣,∣∣∣A⋅A∣∣∣}≫∣∣A∣∣12/11(log2∣∣A∣∣)5/11. This new estimate matches, up to a logarithmic factor, the current best known bound obtained over prime fields by Rudnev
Resumo:
This chapter explores the role of mentors in supporting pre-service teachers to include all children in mathematics teaching, no matter what their individual needs.
Resumo:
Previous research has suggested that parents’ aspirations for their children’s academic attainment can have a positive influence on children’s actual academic performance. Possible negative effects of parental over-aspiration, however, have found little attention in the psychological literature. Employing a dual-change score model with longitudinal data from a representative sample of German schoolchildren and their parents (N = 3,530; grades 5 to 10), we showed that parental aspiration and children’s mathematical achievement were linked by positive reciprocal relations over time. Importantly, we also found that parental aspiration that exceeded their expectation (i.e., over-aspiration) had negative reciprocal relations with children’s mathematical achievement. These results were fairly robust after controlling for a variety of demographic and cognitive variables such as children’s gender, age, intelligence, school type, and family SES. The results were also replicated with an independent sample of US parents and their children. These findings suggest that unrealistically high parental aspiration can be detrimental for children’s achievement.
Resumo:
We analyze a fully discrete spectral method for the numerical solution of the initial- and periodic boundary-value problem for two nonlinear, nonlocal, dispersive wave equations, the Benjamin–Ono and the Intermediate Long Wave equations. The equations are discretized in space by the standard Fourier–Galerkin spectral method and in time by the explicit leap-frog scheme. For the resulting fully discrete, conditionally stable scheme we prove an L2-error bound of spectral accuracy in space and of second-order accuracy in time.