61 resultados para Dirichlet eigenvalues

em CentAUR: Central Archive University of Reading - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider a quantity κ(Ω)—the distance to the origin from the null variety of the Fourier transform of the characteristic function of Ω. We conjecture, firstly, that κ(Ω) is maximised, among all convex balanced domains of a fixed volume, by a ball, and also that κ(Ω) is bounded above by the square root of the second Dirichlet eigenvalue of Ω. We prove some weaker versions of these conjectures in dimension two, as well as their validity for domains asymptotically close to a disk, and also discuss further links between κ(Ω) and the eigenvalues of the Laplacians.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the imposition of Dirichlet boundary conditions in the finite element modelling of moving boundary problems in one and two dimensions for which the total mass is prescribed. A modification of the standard linear finite element test space allows the boundary conditions to be imposed strongly whilst simultaneously conserving a discrete mass. The validity of the technique is assessed for a specific moving mesh finite element method, although the approach is more general. Numerical comparisons are carried out for mass-conserving solutions of the porous medium equation with Dirichlet boundary conditions and for a moving boundary problem with a source term and time-varying mass.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let $A$ be an infinite Toeplitz matrix with a real symbol $f$ defined on $[-\pi, \pi]$. It is well known that the sequence of spectra of finite truncations $A_N$ of $A$ converges to the convex hull of the range of $f$. Recently, Levitin and Shargorodsky, on the basis of some numerical experiments, conjectured, for symbols $f$ with two discontinuities located at rational multiples of $\pi$, that the eigenvalues of $A_N$ located in the gap of $f$ asymptotically exhibit periodicity in $N$, and suggested a formula for the period as a function of the position of discontinuities. In this paper, we quantify and prove the analog of this conjecture for the matrix $A^2$ in a particular case when $f$ is a piecewise constant function taking values $-1$ and $1$.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new approach is presented for the solution of spectral problems on infinite domains with regular ends, which avoids the need to solve boundary-value problems for many trial values of the spectral parameter. We present numerical results both for eigenvalues and for resonances, comparing with results reported by Aslanyan, Parnovski and Vassiliev.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we study generalised prime systems for which the integer counting function NP(x) is asymptotically well behaved, in the sense that NP(x)=ρx+O(xβ), where ρ is a positive constant and . For such systems, the associated zeta function ζP(s) is holomorphic for . We prove that for , for any ε>0, and also for ε=0 for all such σ except possibly one value. The Dirichlet divisor problem for generalised integers concerns the size of the error term in NkP(x)−Ress=1(ζPk(s)xs/s), which is O(xθ) for some θ<1. Letting αk denote the infimum of such θ, we show that .

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyse the Dirichlet problem for the elliptic sine Gordon equation in the upper half plane. We express the solution $q(x,y)$ in terms of a Riemann-Hilbert problem whose jump matrix is uniquely defined by a certain function $b(\la)$, $\la\in\R$, explicitly expressed in terms of the given Dirichlet data $g_0(x)=q(x,0)$ and the unknown Neumann boundary value $g_1(x)=q_y(x,0)$, where $g_0(x)$ and $g_1(x)$ are related via the global relation $\{b(\la)=0$, $\la\geq 0\}$. Furthermore, we show that the latter relation can be used to characterise the Dirichlet to Neumann map, i.e. to express $g_1(x)$ in terms of $g_0(x)$. It appears that this provides the first case that such a map is explicitly characterised for a nonlinear integrable {\em elliptic} PDE, as opposed to an {\em evolution} PDE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We prove essential self-adjointness of a class of Dirichlet operators in ℝn using the hyperbolic equation approach. This method allows one to prove essential self-adjointness under minimal conditions on the logarithmic derivative of the density and a condition of Muckenhoupt type on the density itself.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the Dirichlet boundary value problem for the Helmholtz equation in a non-locally perturbed half-plane, this problem arising in electromagnetic scattering by one-dimensional rough, perfectly conducting surfaces. We propose a new boundary integral equation formulation for this problem, utilizing the Green's function for an impedance half-plane in place of the standard fundamental solution. We show, at least for surfaces not differing too much from the flat boundary, that the integral equation is uniquely solvable in the space of bounded and continuous functions, and hence that, for a variety of incident fields including an incident plane wave, the boundary value problem for the scattered field has a unique solution satisfying the limiting absorption principle. Finally, a result of continuous dependence of the solution on the boundary shape is obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The usual variational (or weak) formulations of the Helmholtz equation are sign-indefinite in the sense that the bilinear forms cannot be bounded below by a positive multiple of the appropriate norm squared. This is often for a good reason, since in bounded domains under certain boundary conditions the solution of the Helmholtz equation is not unique at wavenumbers that correspond to eigenvalues of the Laplacian, and thus the variational problem cannot be sign-definite. However, even in cases where the solution is unique for all wavenumbers, the standard variational formulations of the Helmholtz equation are still indefinite when the wavenumber is large. This indefiniteness has implications for both the analysis and the practical implementation of finite element methods. In this paper we introduce new sign-definite (also called coercive or elliptic) formulations of the Helmholtz equation posed in either the interior of a star-shaped domain with impedance boundary conditions, or the exterior of a star-shaped domain with Dirichlet boundary conditions. Like the standard variational formulations, these new formulations arise just by multiplying the Helmholtz equation by particular test functions and integrating by parts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the spectrum of a one-dimensional Dirac operator pencil, with a coupling constant in front of the potential considered as the spectral parameter. Motivated by recent investigations of graphene waveguides, we focus on the values of the coupling constant for which the kernel of the Dirac operator contains a square integrable function. In physics literature such a function is called a confined zero mode. Several results on the asymptotic distribution of coupling constants giving rise to zero modes are obtained. In particular, we show that this distribution depends in a subtle way on the sign variation and the presence of gaps in the potential. Surprisingly, it also depends on the arithmetic properties of certain quantities determined by the potential. We further observe that variable sign potentials may produce complex eigenvalues of the operator pencil. Some examples and numerical calculations illustrating these phenomena are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scene classification based on latent Dirichlet allocation (LDA) is a more general modeling method known as a bag of visual words, in which the construction of a visual vocabulary is a crucial quantization process to ensure success of the classification. A framework is developed using the following new aspects: Gaussian mixture clustering for the quantization process, the use of an integrated visual vocabulary (IVV), which is built as the union of all centroids obtained from the separate quantization process of each class, and the usage of some features, including edge orientation histogram, CIELab color moments, and gray-level co-occurrence matrix (GLCM). The experiments are conducted on IKONOS images with six semantic classes (tree, grassland, residential, commercial/industrial, road, and water). The results show that the use of an IVV increases the overall accuracy (OA) by 11 to 12% and 6% when it is implemented on the selected and all features, respectively. The selected features of CIELab color moments and GLCM provide a better OA than the implementation over CIELab color moment or GLCM as individuals. The latter increases the OA by only ∼2 to 3%. Moreover, the results show that the OA of LDA outperforms the OA of C4.5 and naive Bayes tree by ∼20%. © 2014 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JRS.8.083690]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For a particular family of long-range potentials V, we prove that the eigenvalues of the indefinite Sturm–Liouville operator A = sign(x)(−Δ+V(x)) accumulate to zero asymptotically along specific curves in the complex plane. Additionally, we relate the asymptotics of complex eigenvalues to the two-term asymptotics of the eigenvalues of associated self-adjoint operators.