95 resultados para Dirichlet Boundary Conditions
em CentAUR: Central Archive University of Reading - UK
Resumo:
We consider the imposition of Dirichlet boundary conditions in the finite element modelling of moving boundary problems in one and two dimensions for which the total mass is prescribed. A modification of the standard linear finite element test space allows the boundary conditions to be imposed strongly whilst simultaneously conserving a discrete mass. The validity of the technique is assessed for a specific moving mesh finite element method, although the approach is more general. Numerical comparisons are carried out for mass-conserving solutions of the porous medium equation with Dirichlet boundary conditions and for a moving boundary problem with a source term and time-varying mass.
Resumo:
The P-1-P-1 finite element pair is known to allow the existence of spurious pressure (surface elevation) modes for the shallow water equations and to be unstable for mixed formulations. We show that this behavior is strongly influenced by the strong or the weak enforcement of the impermeability boundary conditions. A numerical analysis of the Stommel model is performed for both P-1-P-1 and P-1(NC)-P-1 mixed formulations. Steady and transient test cases are considered. We observe that the P-1-P-1 element exhibits stable discrete solutions with weak boundary conditions or with fully unstructured meshes. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
We study the effect of varying the boundary condition on: the spectral function of a finite one-dimensional Hubbard chain, which we compute using direct (Lanczos) diagonalization of the Hamiltonian. By direct comparison with the two-body response functions and with the exact solution of the Bethe ansatz equations, we can identify both spinon and holon features in the spectra. At half-filling the spectra have the well-known structure of a low-energy holon band and its shadow-which spans the whole Brillouin zone-and a spinon band present for momenta less than the Fermi momentum. Features related to the twisted boundary condition are cusps in the spinon band. We show that the spectral building principle, adapted to account for both the finite system size and the twisted boundary condition, describes the spectra well in terms of single spinon and holon excitations. We argue that these finite-size effects are a signature of spin-charge separation and that their study should help establish the existence and nature of spin-charge separation in finite-size systems.
Resumo:
We consider scattering of a time harmonic incident plane wave by a convex polygon with piecewise constant impedance boundary conditions. Standard finite or boundary element methods require the number of degrees of freedom to grow at least linearly with respect to the frequency of the incident wave in order to maintain accuracy. Extending earlier work by Chandler-Wilde and Langdon for the sound soft problem, we propose a novel Galerkin boundary element method, with the approximation space consisting of the products of plane waves with piecewise polynomials supported on a graded mesh with smaller elements closer to the corners of the polygon. Theoretical analysis and numerical results suggest that the number of degrees of freedom required to achieve a prescribed level of accuracy grows only logarithmically with respect to the frequency of the incident wave.
Resumo:
A new boundary integral operator is introduced for the solution of the soundsoft acoustic scattering problem, i.e., for the exterior problem for the Helmholtz equation with Dirichlet boundary conditions. We prove that this integral operator is coercive in L2(Γ) (where Γ is the surface of the scatterer) for all Lipschitz star-shaped domains. Moreover, the coercivity is uniform in the wavenumber k = ω/c, where ω is the frequency and c is the speed of sound. The new boundary integral operator, which we call the “star-combined” potential operator, is a slight modification of the standard combined potential operator, and is shown to be as easy to implement as the standard one. Additionally, to the authors' knowledge, it is the only second-kind integral operator for which convergence of the Galerkin method in L2(Γ) is proved without smoothness assumptions on Γ except that it is Lipschitz. The coercivity of the star-combined operator implies frequency-explicit error bounds for the Galerkin method for any approximation space. In particular, these error estimates apply to several hybrid asymptoticnumerical methods developed recently that provide robust approximations in the high-frequency case. The proof of coercivity of the star-combined operator critically relies on an identity first introduced by Morawetz and Ludwig in 1968, supplemented further by more recent harmonic analysis techniques for Lipschitz domains.
Resumo:
We study initial-boundary value problems for linear evolution equations of arbitrary spatial order, subject to arbitrary linear boundary conditions and posed on a rectangular 1-space, 1-time domain. We give a new characterisation of the boundary conditions that specify well-posed problems using Fokas' transform method. We also give a sufficient condition guaranteeing that the solution can be represented using a series. The relevant condition, the analyticity at infinity of certain meromorphic functions within particular sectors, is significantly more concrete and easier to test than the previous criterion, based on the existence of admissible functions.
Resumo:
We consider the time-harmonic Maxwell equations with constant coefficients in a bounded, uniformly star-shaped polyhedron. We prove wavenumber-explicit norm bounds for weak solutions. This result is pivotal for convergence proofs in numerical analysis and may be a tool in the analysis of electromagnetic boundary integral operators.
Resumo:
Model differences in projections of extratropical regional climate change due to increasing greenhouse gases are investigated using two atmospheric general circulation models (AGCMs): ECHAM4 (Max Planck Institute, version 4) and CCM3 (National Center for Atmospheric Research Community Climate Model version 3). Sea-surface temperature (SST) fields calculated from observations and coupled versions of the two models are used to force each AGCM in experiments based on time-slice methodology. Results from the forced AGCMs are then compared to coupled model results from the Coupled Model Intercomparison Project 2 (CMIP2) database. The time-slice methodology is verified by showing that the response of each model to doubled CO2 and SST forcing from the CMIP2 experiments is consistent with the results of the coupled GCMs. The differences in the responses of the models are attributed to (1) the different tropical SST warmings in the coupled simulations and (2) the different atmospheric model responses to the same tropical SST warmings. Both are found to have important contributions to differences in implied Northern Hemisphere (NH) winter extratropical regional 500 mb height and tropical precipitation climate changes. Forced teleconnection patterns from tropical SST differences are primarily responsible for sensitivity differences in the extratropical North Pacific, but have relatively little impact on the North Atlantic. There are also significant differences in the extratropical response of the models to the same tropical SST anomalies due to differences in numerical and physical parameterizations. Differences due to parameterizations dominate in the North Atlantic. Differences in the control climates of the two coupled models from the current climate, in particular for the coupled model containing CCM3, are also demonstrated to be important in leading to differences in extratropical regional sensitivity.
Resumo:
The usual variational (or weak) formulations of the Helmholtz equation are sign-indefinite in the sense that the bilinear forms cannot be bounded below by a positive multiple of the appropriate norm squared. This is often for a good reason, since in bounded domains under certain boundary conditions the solution of the Helmholtz equation is not unique at wavenumbers that correspond to eigenvalues of the Laplacian, and thus the variational problem cannot be sign-definite. However, even in cases where the solution is unique for all wavenumbers, the standard variational formulations of the Helmholtz equation are still indefinite when the wavenumber is large. This indefiniteness has implications for both the analysis and the practical implementation of finite element methods. In this paper we introduce new sign-definite (also called coercive or elliptic) formulations of the Helmholtz equation posed in either the interior of a star-shaped domain with impedance boundary conditions, or the exterior of a star-shaped domain with Dirichlet boundary conditions. Like the standard variational formulations, these new formulations arise just by multiplying the Helmholtz equation by particular test functions and integrating by parts.
Resumo:
We study boundary value problems posed in a semistrip for the elliptic sine-Gordon equation, which is the paradigm of an elliptic integrable PDE in two variables. We use the method introduced by one of the authors, which provides a substantial generalization of the inverse scattering transform and can be used for the analysis of boundary as opposed to initial-value problems. We first express the solution in terms of a 2 by 2 matrix Riemann-Hilbert problem whose \jump matrix" depends on both the Dirichlet and the Neumann boundary values. For a well posed problem one of these boundary values is an unknown function. This unknown function is characterised in terms of the so-called global relation, but in general this characterisation is nonlinear. We then concentrate on the case that the prescribed boundary conditions are zero along the unbounded sides of a semistrip and constant along the bounded side. This corresponds to a case of the so-called linearisable boundary conditions, however a major difficulty for this problem is the existence of non-integrable singularities of the function q_y at the two corners of the semistrip; these singularities are generated by the discontinuities of the boundary condition at these corners. Motivated by the recent solution of the analogous problem for the modified Helmholtz equation, we introduce an appropriate regularisation which overcomes this difficulty. Furthermore, by mapping the basic Riemann-Hilbert problem to an equivalent modified Riemann-Hilbert problem, we show that the solution can be expressed in terms of a 2 by 2 matrix Riemann-Hilbert problem whose jump matrix depends explicitly on the width of the semistrip L, on the constant value d of the solution along the bounded side, and on the residues at the given poles of a certain spectral function denoted by h. The determination of the function h remains open.
Resumo:
The goal of this work is the efficient solution of the heat equation with Dirichlet or Neumann boundary conditions using the Boundary Elements Method (BEM). Efficiently solving the heat equation is useful, as it is a simple model problem for other types of parabolic problems. In complicated spatial domains as often found in engineering, BEM can be beneficial since only the boundary of the domain has to be discretised. This makes BEM easier than domain methods such as finite elements and finite differences, conventionally combined with time-stepping schemes to solve this problem. The contribution of this work is to further decrease the complexity of solving the heat equation, leading both to speed gains (in CPU time) as well as requiring smaller amounts of memory to solve the same problem. To do this we will combine the complexity gains of boundary reduction by integral equation formulations with a discretisation using wavelet bases. This reduces the total work to O(h
Resumo:
In this paper we consider the 2D Dirichlet boundary value problem for Laplace’s equation in a non-locally perturbed half-plane, with data in the space of bounded and continuous functions. We show uniqueness of solution, using standard Phragmen-Lindelof arguments. The main result is to propose a boundary integral equation formulation, to prove equivalence with the boundary value problem, and to show that the integral equation is well posed by applying a recent partial generalisation of the Fredholm alternative in Arens et al [J. Int. Equ. Appl. 15 (2003) pp. 1-35]. This then leads to an existence proof for the boundary value problem. Keywords. Boundary integral equation method, Water waves, Laplace’s
Resumo:
We solve a Dirichlet boundary value problem for the Klein–Gordon equation posed in a time-dependent domain. Our approach is based on a general transform method for solving boundary value problems for linear and integrable nonlinear PDE in two variables. Our results consist of the inversion formula for a generalized Fourier transform, and of the application of this generalized transform to the solution of the boundary value problem.