29 resultados para Directed Union of Artinian Subrings
em CentAUR: Central Archive University of Reading - UK
Resumo:
Three new polynuclear copper(II) complexes of 2-picolinic acid (Hpic), {[Cu-2(pic)(3)(H2O)]ClO4}(n) (1), {[Cu-2(pic)(3)(H2O)]BF4}(n) (2), and [Cu-2(pic)3(H2O)(2)(NO3)](n) (3), have been synthesized by reaction of the "metalloligand" [Cu-(pic)(2)] with the corresponding copper(II) salts. The compounds are characterized by single-crystal X-ray diffraction analyses and variable-temperature magnetic measurements. Compounds 1 and 2 are isomorphous and crystallize in the triclinic system with space group P (1) over bar, while 3 crystallizes in the monoclinic system with space group P2(1)/n. The structural analyses reveal that complexes 1 and 2 are constructed by "fish backbone" chains through syn-anti (equatorial-equatorial) carboxylate bridges, which are linked to one another by syn-anti (equatorial-axial) carboxylate bridges, giving rise to a rectangular grid-like two-dimensional net. Complex 3 is formed by alternating chains of syn-anti carboxylate-bridged copper(II) atoms, which are linked together by strong H bonds involving coordinated nitrate ions and water molecules and uncoordinated oxygen atoms from carboxylate groups. The different coordination ability of the anions along with their involvement in the H-bonding network seems to be responsible for the difference in the final polymeric structures. Variable-temperature (2-300 K) magnetic susceptibility measurement shows the presence of weak ferromagnetic coupling for all three complexes that have been fitted with a fish backbone model developed for 1 and 2 (J = 1.74 and 0.99 cm(-1); J' = 0.19 and 0.25 cm(-1), respectively) and an alternating chain model for 3 (J = 1.19 cm(-1) and J' = 1.19 cm(-1)).
Resumo:
The synthesis of a range of dinuclear Cu(II) dithiocarbamate (dtc)-based macrocycles and their characterisation are described. By carefully tuning the size of the aromatic spacer, cavities of different dimensions can be designed. The length and flexibility of the chosen spacer group dictates the intermetallic distance and hence the degree of communication between the two metal centres as evidenced by electrochemical and EPR experiments. This is illustrated by crystallographic evidence that show the macrocycles can host guests (such as CH2Cl2) or can fold and form unexpected Cu(I) dtc clusters.
Resumo:
The chapter sets its analysis of the historical and contemporary detention of asylum seekers in Israel against a wider context of that country's national immigration policy. The chapter demonstrates that Israel perceives asylum seekers as a threat to its self-defined Jewish character. Its twofold conclusion argues that the government therefore subjects asylum seekers to harsh detention practices that afford detainees limited procedural guarantees, and that these procedures cut against the justification for detention as a measure to facilitate deportation.
Resumo:
The purpose of this paper is to show that, for a large class of band-dominated operators on $\ell^\infty(Z,U)$, with $U$ being a complex Banach space, the injectivity of all limit operators of $A$ already implies their invertibility and the uniform boundedness of their inverses. The latter property is known to be equivalent to the invertibility at infinity of $A$, which, on the other hand, is often equivalent to the Fredholmness of $A$. As a consequence, for operators $A$ in the Wiener algebra, we can characterize the essential spectrum of $A$ on $\ell^p(Z,U)$, regardless of $p\in[1,\infty]$, as the union of point spectra of its limit operators considered as acting on $\ell^p(Z,U)$.
Resumo:
Inductively coupled plasma mass spectrometry (ICP-MS) was used to investigate changes in trace element concentration in two high resolution sequences of tree rings from central Sweden. Individual annual growth increments from 18002002 to 1930-2002 were sampled from two Scots pine (Pinus sylvestris) trees from the Siljansfors Experimental Forest. The aims of the study were: to test the viability of conventional solution induction ICP-MS as a technique for investigating the multi-elemental chemistry of long tree ring sequences at annual resolution, and, to test this specifically with a view to detecting changes in elemental concentrations of Swedish tree rings contemporary with the major (and relatively proximal) Icelandic eruption of Askja (1875). It was found that despite a time consuming sample preparation process, it was possible to use conventional ICP-MS for multi-elemental analysis of a long sequence of tree rings at annual resolution. Although promising data were produced, no truly conclusive concentration anomaly could be detected in the sequence to indicate the impact of the Askja eruption on environmental chemistry. Overall findings underlined the complexity of the tree/environment interaction and the cautious approach to data interpretation essential for any dendrochemical study. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The International System of Units, the SI, is built upon seven base quantities and seven base units, as summarized in the table below. Although most of these are familiar to all scientists, the quantity “amount of substance” and its unit “mole” are less familiar and are mainly used by chemists.1 In the chemistry community, the unit “mole” is familiar, but the name of the corresponding quantity “amount of substance” is not so familiar, and the concept is still a source of difficulty for many students. This article reviews and clarifies these two concepts2 and discusses the definition of the unit “mole” and its possible revision.
Resumo:
The cupin superfamily of proteins is among the most functionally diverse of any described to date. It was named on the basis of the conserved beta-barrel fold ('cupa' is the Latin term for a small barrel), and comprises both enzymatic and non-enzymatic members, which have either one or two cupin domains. Within the conserved tertiary structure, the variety of biochemical function is provided by minor variation of the residues in the active site and the identity of the bound metal ion. This review discusses the advantages of this particular scaffold and provides an evolutionary analysis of 18 different subclasses within the cupin superfamily.
Resumo:
Extractability and recovery of cellulose from cell walls influences many industrial processes and also the utilisation of biomass for energy purposes. The utility of genetic manipulation of lignin has proven potential for optimising such processes and is also advantageous for the environment. Hemicelluloses, particularly secondary wall xylans, also influence the extractability of cellulose. UDP-glucuronate decarboxylase produces UDP-xylose, the precursor for xylans and the effect of its down-regulation on cell wall structure and cellulose extractability in transgenic tobacco has been investigated. Since there are a number of potential UDP-glucuronate decarboxylase genes, a 490 bp sequence of high similarity between members of the family, was chosen for general alteration of the expression of the gene family. Sense and antisense transgenic lines were analysed for enzyme activity using a modified and optimised electrophoretic assay, for enzyme levels by western blotting and for secondary cell wall composition. Some of the down-regulated antisense plants showed high glucose to xylose ratios in xylem walls due to less xylose-containing polymers, while arabinose and uronic acid contents, which could also have been affected by any change in UDP-xylose provision, were unchanged. The overall morphology and stem lignin content of the modified lines remained little changed compared with wild-type. However, there were some changes in vascular organisation and reduction of xylans in the secondary walls was confirmed by immunocytochemistry. Pulping analysis showed a decreased pulp yield and a higher Kappa number in some lines compared with controls, indicating that they were less delignified, although the level of residual alkali was reduced. Such traits probably indicate that lignin was less available for removal in a reduced background of xylans. However, the viscosity was higher in most antisense lines, meaning that the cellulose was less broken-down during the pulping process. This is one of the first studies of a directed manipulation of hemicellulose content on cellulose extractability and shows both positive and negative outcomes.
Resumo:
Extractability and recovery of cellulose from cell walls influences many industrial processes and also the utilisation of biomass for energy purposes. The utility of genetic manipulation of lignin has proven potential for optimising such processes and is also advantageous for the environment. Hemicelluloses, particularly secondary wall xylans, also influence the extractability of cellulose. UDP-glucuronate decarboxylase produces UDP-xylose, the precursor for xylans and the effect of its down-regulation on cell wall structure and cellulose extractability in transgenic tobacco has been investigated. Since there are a number of potential UDP-glucuronate decarboxylase genes, a 490 bp sequence of high similarity between members of the family, was chosen for general alteration of the expression of the gene family. Sense and antisense transgenic lines were analysed for enzyme activity using a modified and optimised electrophoretic assay, for enzyme levels by western blotting and for secondary cell wall composition. Some of the down-regulated antisense plants showed high glucose to xylose ratios in xylem walls due to less xylose-containing polymers, while arabinose and uronic acid contents, which could also have been affected by any change in UDP-xylose provision, were unchanged. The overall morphology and stem lignin content of the modified lines remained little changed compared with wild-type. However, there were some changes in vascular organisation and reduction of xylans in the secondary walls was confirmed by immunocytochemistry. Pulping analysis showed a decreased pulp yield and a higher Kappa number in some lines compared with controls, indicating that they were less delignified, although the level of residual alkali was reduced. Such traits probably indicate that lignin was less available for removal in a reduced background of xylans. However, the viscosity was higher in most antisense lines, meaning that the cellulose was less broken-down during the pulping process. This is one of the first studies of a directed manipulation of hemicellulose content on cellulose extractability and shows both positive and negative outcomes.
Resumo:
Iron oxidation in the bacterial ferritin EcFtnA from Escherichia coli shows marked differences from its homologue human H-chain ferritin (HuHF). While the amino acid residues that constitute the dinuclear center in these proteins are highly conserved, EcFtnA has a third iron-binding site (C site) in close proximity to the dinuclear center that is seemingly responsible for these differences. Here, we describe the first thermodynamic study of Fe2+ binding to EcFtnA and its variants to determine the location of the primary ferrous ion-binding sites on the protein and to better understand the role of the third C site in iron binding. Isothermal titration calorimetric analyses of the wild-type protein reveal the presence of two main classes of binding sites in the pH range of 6.5-7.5, ascribed to Fe2+ binding, first at the A and then the B sites. Site-directed mutagenesis of ligands in the A, B, or C sites affects the apparent Fe2+-binding stoichiometries at the unaltered sites. The data imply some degree of inter- and intrasubunit negative cooperative interaction between sites. Unlike HuHF where only the A site initially binds Fe2+, both A and B sites in EcFtnA bind Fe2+, implying a role for the C site in influencing the binding of Fe2+ at the B site of the di-iron center of EcFtnA. The ITC equations describing a binding model for three classes of independent binding sites are reported here for the first time.
Resumo:
Expression of human immunodeficiency virus type 1 (HIV-1) Gag protein in insect cells using baculovirus vectors leads to the abundant production of virus-like particles (VLPs) that represent the immature form of the virus. When Gag-Pol is included, however, VLP production is abolished, a result attributed to premature protease activation degrading the intracellular pool of Gag precursor before particle assembly can occur. As large-scale synthesis of mature noninfectious VLPs would be useful, we have sought to control HIV protease activity in insect cells to give a balance of Gag and Gag-Pol that is compatible with mature particle formation. We show here that intermediate levels of protease activity in insect cells can be attained through site-directed mutagenesis of the protease and through antiprotease drug treatment. However, despite Gag cleavage patterns that mimicked those seen in mammalian cells, VLP synthesis exhibited an essentially all-or-none response in which VLP synthesis occurred but was immature or failed completely. Our data are consistent with a requirement for specific cellular factors in addition to the correct ratio of Gag and Gag-Pol for assembly of mature retrovirus particles in heterologous cell types. (C) 2003 Elsevier Science (USA). All rights reserved.