4 resultados para Digital medical library

em CentAUR: Central Archive University of Reading - UK


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background 29 autoimmune diseases, including Rheumatoid Arthritis, gout, Crohn’s Disease, and Systematic Lupus Erythematosus affect 7.6-9.4% of the population. While effective therapy is available, many patients do not follow treatment or use medications as directed. Digital health and Web 2.0 interventions have demonstrated much promise in increasing medication and treatment adherence, but to date many Internet tools have proven disappointing. In fact, most digital interventions continue to suffer from high attrition in patient populations, are burdensome for healthcare professionals, and have relatively short life spans. Objective Digital health tools have traditionally centered on the transformation of existing interventions (such as diaries, trackers, stage-based or cognitive behavioral therapy programs, coupons, or symptom checklists) to electronic format. Advanced digital interventions have also incorporated attributes of Web 2.0 such as social networking, text messaging, and the use of video. Despite these efforts, there has not been little measurable impact in non-adherence for illnesses that require medical interventions, and research must look to other strategies or development methodologies. As a first step in investigating the feasibility of developing such a tool, the objective of the current study is to systematically rate factors of non-adherence that have been reported in past research studies. Methods Grounded Theory, recognized as a rigorous method that facilitates the emergence of new themes through systematic analysis, data collection and coding, was used to analyze quantitative, qualitative and mixed method studies addressing the following autoimmune diseases: Rheumatoid Arthritis, gout, Crohn’s Disease, Systematic Lupus Erythematosus, and inflammatory bowel disease. Studies were only included if they contained primary data addressing the relationship with non-adherence. Results Out of the 27 studies, four non-modifiable and 11 modifiable risk factors were discovered. Over one third of articles identified the following risk factors as common contributors to medication non-adherence (percent of studies reporting): patients not understanding treatment (44%), side effects (41%), age (37%), dose regimen (33%), and perceived medication ineffectiveness (33%). An unanticipated finding that emerged was the need for risk stratification tools (81%) with patient-centric approaches (67%). Conclusions This study systematically identifies and categorizes medication non-adherence risk factors in select autoimmune diseases. Findings indicate that patients understanding of their disease and the role of medication are paramount. An unexpected finding was that the majority of research articles called for the creation of tailored, patient-centric interventions that dispel personal misconceptions about disease, pharmacotherapy, and how the body responds to treatment. To our knowledge, these interventions do not yet exist in digital format. Rather than adopting a systems level approach, digital health programs should focus on cohorts with heterogeneous needs, and develop tailored interventions based on individual non-adherence patterns.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A digital reconstruction of Samuel Beckett's personal library, based on the volumes preserved at his apartment in Paris, in archives (Beckett International Foundation) and private collections (James and Elizabeth Knowlson Collection, Anne Atik, Noga Arikha, Terrence Killeen,...).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Social networks are common in digital health. A new stream of research is beginning to investigate the mechanisms of digital health social networks (DHSNs), how they are structured, how they function, and how their growth can be nurtured and managed. DHSNs increase in value when additional content is added, and the structure of networks may resemble the characteristics of power laws. Power laws are contrary to traditional Gaussian averages in that they demonstrate correlated phenomena. OBJECTIVES: The objective of this study is to investigate whether the distribution frequency in four DHSNs can be characterized as following a power law. A second objective is to describe the method used to determine the comparison. METHODS: Data from four DHSNs—Alcohol Help Center (AHC), Depression Center (DC), Panic Center (PC), and Stop Smoking Center (SSC)—were compared to power law distributions. To assist future researchers and managers, the 5-step methodology used to analyze and compare datasets is described. RESULTS: All four DHSNs were found to have right-skewed distributions, indicating the data were not normally distributed. When power trend lines were added to each frequency distribution, R(2) values indicated that, to a very high degree, the variance in post frequencies can be explained by actor rank (AHC .962, DC .975, PC .969, SSC .95). Spearman correlations provided further indication of the strength and statistical significance of the relationship (AHC .987. DC .967, PC .983, SSC .993, P<.001). CONCLUSIONS: This is the first study to investigate power distributions across multiple DHSNs, each addressing a unique condition. Results indicate that despite vast differences in theme, content, and length of existence, DHSNs follow properties of power laws. The structure of DHSNs is important as it gives insight to researchers and managers into the nature and mechanisms of network functionality. The 5-step process undertaken to compare actor contribution patterns can be replicated in networks that are managed by other organizations, and we conjecture that patterns observed in this study could be found in other DHSNs. Future research should analyze network growth over time and examine the characteristics and survival rates of superusers.