6 resultados para Digital communications.
em CentAUR: Central Archive University of Reading - UK
Resumo:
This chapter considers the Multiband Orthogonal Frequency Division Multiplexing (MB- OFDM) modulation and demodulation with the intention to optimize the Ultra-Wideband (UWB) system performance. OFDM is a type of multicarrier modulation and becomes the most important aspect for the MB-OFDM system performance. It is also a low cost digital signal component efficiently using Fast Fourier Transform (FFT) algorithm to implement the multicarrier orthogonality. Within the MB-OFDM approach, the OFDM modulation is employed in each 528 MHz wide band to transmit the data across the different bands while also using the frequency hopping technique across different bands. Each parallel bit stream can be mapped onto one of the OFDM subcarriers. Quadrature Phase Shift Keying (QPSK) and Dual Carrier Modulation (DCM) are currently used as the modulation schemes for MB-OFDM in the ECMA-368 defined UWB radio platform. A dual QPSK soft-demapper is suitable for ECMA-368 that exploits the inherent Time-Domain Spreading (TDS) and guard symbol subcarrier diversity to improve the receiver performance, yet merges decoding operations together to minimize hardware and power requirements. There are several methods to demap the DCM, which are soft bit demapping, Maximum Likelihood (ML) soft bit demapping, and Log Likelihood Ratio (LLR) demapping. The Channel State Information (CSI) aided scheme coupled with the band hopping information is used as a further technique to improve the DCM demapping performance. ECMA-368 offers up to 480 Mb/s instantaneous bit rate to the Medium Access Control (MAC) layer, but depending on radio channel conditions dropped packets unfortunately result in a lower throughput. An alternative high data rate modulation scheme termed Dual Circular 32-QAM that fits within the configuration of the current standard increasing system throughput thus maintaining the high rate throughput even with a moderate level of dropped packets.
Resumo:
Written for communications and electronic engineers, technicians and students, this book begins with an introduction to data communications, and goes on to explain the concept of layered communications. Other chapters deal with physical communications channels, baseband digital transmission, analog data transmission, error control and data compression codes, physical layer standards, the data link layer, the higher layers of the protocol hierarchy, and local are networks (LANS). Finally, the book explores some likely future developments.
Resumo:
The literature has identified issues around transitions among phases for all pupils (Cocklin, 1999) including pupils with special educational needs (SEN) (Morgan 1999, Maras and Aveling 2006). These issues include pupils’ uncertainties and worries about building size and spatial orientation, exposure to a range of teaching styles, relationships with peers and older pupils as well as parents’ difficulties in establishing effective communications with prospective secondary schools. Research has also identified that interventions to facilitate these educational transitions should consider managerial support, social and personal familiarisation with the new setting as well as personalised learning strategies (BECTA 2004). However, the role that digital technologies can play in supporting these strategies or facilitating the role of the professionals such as SENCos and heads of departments involved in supporting effective transitions for pupils with SEN has not been widely discussed. Uses of ICT include passing references of student-produced media presentations (Higgins 1993) and use of photographs of activities attached to a timetable to support familiarisation with the secondary curriculum for pupils with autism (Cumine et al. 1998).