25 resultados para Different temperatures
em CentAUR: Central Archive University of Reading - UK
Resumo:
A laboratory experiment was conducted to determine the effect of temperature (2, 12, 22 °C) on the rate of aerobic
decomposition of skeletal muscle tissue (Ovis aries) in a sandy loam soil incubated for a period of 42 days.
Measurements of decomposition processes included skeletal muscle tissue mass loss, carbon dioxide (CO2) evolution,
microbial biomass, soil pH, skeletal muscle tissue carbon (C) and nitrogen (N) content and the calculation
of metabolic quotient (qCO2). Incubation temperature and skeletal muscle tissue quality had a significant
effect on all of the measured process rates with 2 °C usually much lower than 12 and 22 °C. Cumulative CO2
evolution at 2, 12 and 22 °C equaled 252, 619 and 905 mg CO2, respectively. A significant correlation (P<0.001)
was detected between cumulative CO2 evolution and tissue mass loss at all temperatures. Q10s for mass loss
and CO2 evolution, which ranged from 1.19 to 3.95, were higher for the lower temperature range (Q10(2–
12 °C)>Q10(12–22 °C)) in the Ovis samples and lower for the low temperature range (Q10(2–12 °C)
Resumo:
A series of amphiphilic copolymers were synthesized by free-radical copolymerization of N-vinylpyrrolidone (NVP) with vinyl propyl ether (VPE), and the structure of the copolymers was characterized by elemental analysis and gel permeation chromatography. The reactivity of VPE in copolymerization was found to be significantly lower than the reactivity of NVP, which resulted in a decrease of copolymers’ yields and molecular weights with higher content of VPE in the feed mixture. An investigation of the behavior of the copolymers in aqueous solutions at different temperatures by dynamic light scattering revealed the presence of lower critical solution temperature, which depending on the content of VPE ranged within 23−38 °C. Aqueous solutions of these copolymers were studied by fluorescent spectroscopy with pyrene as a polarity probe to reveal the formation of hydrophobic domains. The copolymers were found to be useful for enhancing the solubility of riboflavin in water.
Resumo:
Techniques for obtaining quantitative values of the temperatures and concentrations of remote hot gaseous effluents from their measured passive emission spectra have been examined in laboratory experiments. The high sensitivity of the spectrometer in the vicinity of the 2397 cm-1 band head region of CO2 has allowed the gas temperature to be calculated from the relative intensity of the observed rotational lines. The spatial distribution of the CO2 in a methane flame has been reconstructed tomographically using a matrix inversion technique. The spectrometer has been calibrated against a black body source at different temperatures and a self absorption correction has been applied to the data avoiding the need to measure the transmission directly. Reconstruction artifacts have been reduced by applying a smoothing routine to the inversion matrix.
Resumo:
In future climates, greater heat tolerance at anthesis will be required in rice. The effect of high temperature at anthesis on spikelet fertility was studied on IR64 (lowland indica) and Azucena (upland Japonica) at 29.6 degrees C (control), 33.7 degrees C, and 36.2 degrees C tissue temperatures. The objectives of the study were to: (i) determine the effect of temperature on flowering pattern; (ii) examine the effect of time of day of spikelet anthesis relative to a high temperature episode on spikelet fertility; and (iii) study the interactions between duration of exposure and temperature on spikelet fertility. Plants were grown at 30/24 degrees C day/night temperature in a greenhouse and transferred to growth cabinets for the temperature treatments. Individual spikelets were marked with paint to relate fertility to the time of exposure to different temperatures and durations. In both genotypes the pattern of flowering was similar, and peak anthesis occurred between 10.30 h and 11.30 h at 29.2 degrees C, and about 45 min earlier at 36.2 degrees C. In IR64, high temperature increased the number of spikelets reaching anthesis, whereas in Azucena numbers were reduced. In both genotypes :511 h exposure to >= 33.7 degrees C at anthesis caused sterility. In IR64, there was no interaction between temperature and duration of exposure, and spikelet fertility was reduced by about 7% per degrees C > 29.6 degrees C. In Azucena there was a significant interaction and spikelet fertility was reduced by 2.4% degrees Cd-1 above a threshold of 33 degrees C. Marking individual spikelets is an effective method to phenotype genotypes and lines for heat tolerance that removes any apparent tolerance due to temporal escape.
Resumo:
The influence of temperature on life history traits of four Acyrthosiphon pisum clones was investigated, together with their resistance to one genotype of the fungal entomopathogen Erynia neoaphidis . There was no difference among aphid clones in development rate, but they did differ in fecundity. Both development rate and fecundity were influenced by temperature, but all clones showed similar responses to the changes in temperature (i.e. the interaction term was nonsignificant). However, there were significant differences among clones in susceptibility to the pathogen, and this was influenced by temperature. Furthermore, the clones differed in how temperature influenced susceptibility, with susceptibility rankings changing with temperature. Two clones showed changes in susceptibility which mirrored changes in the in vitro vegetative growth rate of E. neoaphidis at different temperatures, whereas two other clones differed considerably from this expected response. Such interactions between genotype and temperature may help maintain heritable variation in aphid susceptibility to fungal pathogen attack and have implications for our understanding of disease dynamics in natural populations. This study also highlights the difficulties of drawing conclusions about the efficacy of a biological control agent when only a restricted range of pest genotypes or environmental conditions are considered.
Resumo:
The kinetics of the title reactions have been studied by relative-rate methods as a function of temperature. Relative-rate coefficients for the two decomposition channels of 2-methyl-2-butoxyl have been measured at five different temperatures between 283 and 345 K and the observed temperature dependence is consistent with the results of some previous experimental studies. The kinetics of the two decomposition channels of 2-methyl-2-pentoxyl have also been investigated, as a function of temperature, relative to the estimated rate of isomerisation of this radical. Room-temperature rate coefficient data for the two decomposition channels of both 2-methyl-2-pentoxyl and 2-methyl-2-butxoyl (after combining the relative rate coefficient for this latter with a value for the rate coefficient of the major channel, extrapolated from the data presented by Batt et al., Int. J. Chem. Kinet., 1978, 10, 931) are shown to be consistent with a non-linear kinetic correlation, for alkoxyl radical decomposition rate data, previously presented by this laboratory (Johnson et al., Atmos. Environ., 2004, 38, 1755-1765).
Resumo:
A series of three-point bend tests using single edge notched testpieces of pure polycrystalline ice have been performed at three different temperatures (–20°C, –30°C and –40°C). The displacement rate was varied from 1 mm/min to 100 mm/min, producing the crack tip strain rates from about 10–3 to 10–1 s–1. The results show that (a) the fracture toughness of pure polycrystalline ice given by the critical stress intensity factor (K IC) is much lower than that measured from the J—integral under identical conditions; (b) from the determination of K IC, the fracture toughness of pure polycrystalline ice decreases with increasing strain rate and there is good power law relationship between them; (c) from the measurement of the J—integral, a different tendency was appeared: when the crack tip strain rate exceeds a critical value of 6 × 10–3 s–1, the fracture toughness is almost constant but when the crack tip strain rate is less than this value, the fracture toughness increases with decreasing crack tip strain rate. Re-examination of the mechanisms of rate-dependent fracture toughness of pure polycrystalline ice shows that the effect of strain rate is related not only to the blunting of crack tips due to plasticity, creep and stress relaxation but also to the nucleation and growth of microcracks in the specimen.
Resumo:
Changes in texture, microstructure, colour and protein solubility of Thai indigenous and broiler chicken Pectoralis muscle stripes cooked at different temperatures were evaluated. The change in shear value of both chicken muscles was a significant increase from 50 to 80 degrees C but no change from 80 to 100 degrees C. A significant decrease in fibre diameter was obtained in samples heated to an internal temperature of 60 degrees C and the greatest shrinkage of sarcomeres was observed with internal temperatures of 70-100 and 80-100 C for broiler and indigenous chicken muscles, respectively (P < 0.05). Cooking losses of indigenous chicken muscles increased markedly in the temperature range 80-100 C and were significantly higher than those of the broiler (P < 0.001). With increasing temperature, from 50 to 70 degrees C, cooked chicken muscle became lighter and yellower. Relationships between changes in sarcomere length, fibre diameter, shear value, cooking loss and solubility of muscle proteins were evaluated. It was found that the solubility of muscle protein was very highly correlated with the texture of cooked broiler muscle while sarcomere length changes and collagen solubility were important factors influencing the cooking loss and texture of cooked indigenous chicken muscle. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this study was to evaluate the survivability of Bifidobacterium breve NCIMB 702257 in a three malt-based media supplemented with cysteine and yeast extract, and to determine the protective effect of these growth factors. A number of parameterised mathematical models were used to predict of kinetics of viability and total acidity during storage at different temperatures. Results demonstrated a good fit to the experimental mathematical model. The Arrhenius equations showed only reasonable fits and the polynomial plots contained a large area without data between 4 and 25 degrees C. In addition, it was shown that cysteine promotes growth and acid production by bifidobacteria, but does not extend survivability. On the other hand, increasing the yeast extract content of the fermentation media enhances the survivability of B. breve. To our knowledge, this is the first study to address the modelling of the survivability of probiotic bacteria in a cereal based fermentation media at different temperatures, introducing a more quantitative approach to the study of the shelf-life of a probiotic product. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Potent angiotensin l-converting enzyme (ACE) inhibitory peptide mixtures were obtained from the hydrolysis of beta-lactoglobulin (beta Lg) using Protease N Amano, a food-grade commercial proteolytic preparation. Hydrolysis experiments were carried out for 8 h at two different temperatures and neutral pH. Based on their ACE inhibitory activity, samples of 6 h of digestion were chosen for further analysis. The temperature used for the hydrolysis had a marked influence on the type of peptides produced and their concentration in the hydrolysate. Protease N Amano was found to produce very complex peptide mixtures; however, the partially fractionated hydrolysates had already very potent ACE inhibitory activity. The novel heptapeptide SAPLRVY was isolated and characterised. It corresponded to beta Lg f(36-42) and had an IC50 value of 8 mu m, which is considerably lower than the most potent ACE inhibitory peptides derived from bovine beta Lg reported so far. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Lipid oxidation was studied in beef and chicken muscle after high pressure treatment (0.1-800 MPa) at different temperatures (20-70 degrees C for 20 min, prior to storage at 4 degrees C for 7 days. Pressure treatment of beef samples at room temperature led to increases in TBARS values after 7 days storage at 4 degrees C; however, the increases were more marked after treatment at pressures >= 400 MPa (at least fivefold) than after treatment at lower pressures (less than threefold). Similar results were found in those samples treated at 40 degrees C, but at 60 degrees C and 70 degrees C pressure had little additional effect on the oxidative stability of the muscle. Pressure treatments of 600 MPa and 800 MPa, at all temperatures. induced increased rates of lipid oxidation in chicken muscle, but, in general, chicken muscle was more stable than beef to pressure. and the catalytic effect of pressure was still seen at the higher temperatures of 50 degrees C, 60 degrees C and 70 degrees C. The addition of 1%, Na(2)EDTA decreased TBARS values of the beef muscle during storage and inhibited the increased rates of lipid oxidation induced by pressure. The inhibition by vitamin E (0.05% w/w) and BHT (0.02% w/w), either alone or in combination, were less marked than seen with Na(2)EDTA, suggesting that transition metal ions released from insoluble complexes are of major importance in catalysing lipid oxidation in pressure-treated muscle foods. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The effects of high pressure (to 800 MPa) applied at different temperatures (20-70 degreesC) for 20 min on beef post-rigor longissimus dorsi texture were studied. Texture profile analysis showed that when heated at ambient pressure there was the expected increase in hardness with increasing temperature and when pressure was applied at room temperature there was again the expected increase in hardness with increasing pressure. Similar results to those found at ambient temperature were found when pressure was applied at 40 degreesC. However, at higher temperatures, 60 and 70 degreesC it was found that pressures of 200 MPa caused large and significant decreases in hardness. The results found for hardness were mirrored by those for gumminess and chewiness. To further understand the changes in texture observed, intact beef longissimus dorsi samples and extracted myofibrils were both subjected to differential scanning calorimetry after being subjected to the same pressure/temperature regimes. As expected collagen was reasonably inert to pressure and only at temperatures of 60-70 degreesC was it denatured/unfolded. However, myosin was relatively easily unfolded by both pressure and temperature and when pressure denatured a new and modified structure was formed of low thermal stability. Although this new structure had low thermal stability at ambient pressure it still formed in both the meat and myofibrils when pressure was applied at 60 degreesC. It seems unlikely that structurally induced changes can be a major cause of the significant loss of hardness observed when beef is treated at high temperature (60-70 degreesC) and 200 MPa and it is suggested that accelerated proteolysis under these conditions is the major cause. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Ice cloud representation in general circulation models remains a challenging task, due to the lack of accurate observations and the complexity of microphysical processes. In this article, we evaluate the ice water content (IWC) and ice cloud fraction statistical distributions from the numerical weather prediction models of the European Centre for Medium-Range Weather Forecasts (ECMWF) and the UK Met Office, exploiting the synergy between the CloudSat radar and CALIPSO lidar. Using the last three weeks of July 2006, we analyse the global ice cloud occurrence as a function of temperature and latitude and show that the models capture the main geographical and temperature-dependent distributions, but overestimate the ice cloud occurrence in the Tropics in the temperature range from −60 °C to −20 °C and in the Antarctic for temperatures higher than −20 °C, but underestimate ice cloud occurrence at very low temperatures. A global statistical comparison of the occurrence of grid-box mean IWC at different temperatures shows that both the mean and range of IWC increases with increasing temperature. Globally, the models capture most of the IWC variability in the temperature range between −60 °C and −5 °C, and also reproduce the observed latitudinal dependencies in the IWC distribution due to different meteorological regimes. Two versions of the ECMWF model are assessed. The recent operational version with a diagnostic representation of precipitating snow and mixed-phase ice cloud fails to represent the IWC distribution in the −20 °C to 0 °C range, but a new version with prognostic variables for liquid water, ice and snow is much closer to the observed distribution. The comparison of models and observations provides a much-needed analysis of the vertical distribution of IWC across the globe, highlighting the ability of the models to reproduce much of the observed variability as well as the deficiencies where further improvements are required.
Resumo:
The X-ray diffraction pattern of glassy poly(2-hydroxypropyl ether of bisphenol A) is studied at room temperature on oriented samples in order to associate its different peaks to different structural correlations. On the other hand, X-ray diffraction patterns have been obtained at different temperatures from Tg − 50 K up to Tg + 50 K for the above-mentioned polymer. Attention has been paid to the evolution with temperature of the position of the wide diffraction maximum corresponding to interchain correlations in the polymer. The temperature evolution of this parameter shows a marked discontinuity just at the glass transition temperature.
Resumo:
We present a new methodology that couples neutron diffraction experiments over a wide Q range with single chain modelling in order to explore, in a quantitative manner, the intrachain organization of non-crystalline polymers. The technique is based on the assignment of parameters describing the chemical, geometric and conformational characteristics of the polymeric chain, and on the variation of these parameters to minimize the difference between the predicted and experimental diffraction patterns. The method is successfully applied to the study of molten poly(tetrafluoroethylene) at two different temperatures, and provides unambiguous information on the configuration of the chain and its degree of flexibility. From analysis of the experimental data a model is derived with CC and CF bond lengths of 1.58 and 1.36 Å, respectively, a backbone valence angle of 110° and a torsional angle distribution which is characterized by four isometric states, namely a split trans state at ± 18°, giving rise to a helical chain conformation, and two gauche states at ± 112°. The probability of trans conformers is 0.86 at T = 350°C, which decreases slightly to 0.84 at T = 400°C. Correspondingly, the chain segments are characterized by long all-trans sequences with random changes in sign, rather anisotropic in nature, which give rise to a rather stiff chain. We compare the results of this quantitative analysis of the experimental scattering data with the theoretical predictions of both force fields and molecular orbital conformation energy calculations.